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Preface

The MC6809 was released to the world as the ‘programmer’s dream
machine’. In fact Motorola, the manufacturers of the 6809, did a
great deal of research to discover what the users of its predecessor,
the 6800, wanted as their ideal computer. The 6809 was designed
around their findings. It has a set of instructions that is more
comprehensive and logically complete than any other processor in
its class. For the skilled programmer, it is indeed a ‘dream’ of a
machine.

For the newcomer to machine code, faced with 139 cryptically
named instruction forms, the dream can be a nightmare. Learning to
use the instructions effectively seems a near impossible task. How
could anyone but a TEFAL scientist remember the different actions
of every single instruction, let alone string them together to produce
a program? Well, for a start there is more to programming than just
knowing what instructions will or will not do. Important though
that knowledge is, it can wait; the key to successful machine code
programming is to have the right attitude of mind in the first place.
And that is the approach | have taken in this book.

The introductory chapter tries to get past the concept of the
microcomputer as nothing but a cold-blooded perfectionist with a
heart of silicon. Computers are designed by people and the basic
principles of their operation is not so alien to the way that we
humans work as you might think. Seeing the computer as a
microcosm which echoes human organisational methods is an
essential first step in being able to use it with complete confidence. In
the second chapter |l takea look at how programs ought to be written
to remove most of the mind-bending. It is an exercise which doesn’t
require a thorough knowledge of machine code but does need an
understanding of what both computers and people can and cannot
do.

Except for one chapter which deals with hardware, this book is a
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collection of program subroutines which I think you will find
extremely useful, particularly for games programs. Though not
covering all the 6809’s instructions, the routines do include the vast
majority of instruction forms and addressing modes — probably all
that you will need to use in normal user software programming. |
have documented the routines far more extensively than the sort of
comments usually found in assembler listings to show how
instructions are used to carry out clearly defined tasks. Readingand
trying out fully explained code sequences is a more efficient and
interesting way to learn machine code than attempting to
understand how each instruction works inisolation. All the routines
are written primarily for the Dragon 32 but most of them should
work on other 6809 computers with little or no change.

This book would not have been written without the help of a great
many people to whom | give my thanks - in particular to Richard
Muiles of Granada Publishing for his confidence in the book, to Alan
Tootill who propelled me in this direction a long time ago, to my
wife Chrissie for patiently rereading the manuscript at each minor
revision, and not least to Karl and Sibelind who assisted my
concentration the most by keeping unnaturally quiet. You canshout
your heads off now, kids!

David Barrow



Chapter One
Into Machine Code

The psychologist G. A. Miller coined the phrase ‘The Magical
Number Seven, Plus or Minus Two’to describe the limitations of the
human brain in recognising and retaining discrete items of
information. [t seems that whatever sense is involved - sight, sound,
touch, taste, etc. - human beings are pretty accurate at dealing with
small quantities of data. When asked to cope with more than about
seven items at a time, however, we come unstuck and begin to make
mistakes.

The concept of ar a time is quite flexible and may refer to either
simultaneous or sequential presentation of data. We can tell at a
glance if a telephone number contains four, five or six digits and we
may even be able to hold the image in our minds long enough to read
the number from it. We can certainly remember a six-digit telephone
number that is read out to us over, say, a three-second period but we
may have difficulty remembering one read out over a thirty-second
time span - especially if other things are going on at the same time.

Six-digit telephone numbers are quite easy but how would you get
on with twenty-digit numbers? Could you remember the twenty
digits for the forty seconds or so it would take to dial? Actually,you
might not find this as difficult as you think. How do you see the
telephone number 3624367 As three-six-iwo-four-three-six or as
three-six ... two-four... three-six? If it was your girlfriend’s number
you might even see it as thirty-six ... twenty-four ... thirty-six. She,
no doubt, has a similar method of remembering your number since
the human brain has a trick or two up its cortex to get round the
7+ /=2 limit!

Trick I is to group items together to form larger units but - and
this is the important point - fewer of them. Trick 2 is to form
associations between - well, between anything and everything that
can be linked. The twenty digits of our hypothetical telephone
number would get grouped into 2, 3, 4 or 5 digit sequences. The
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patterns inherent in the groups and our own private associations
would keep the number in our minds long enough for us to dial it.
After an initial period of inventing more suitable names for British
Telecom, our 7+/—2 unit capacity brains would deal fairly
efficiently with the larger numbers.

The way we function as thinking beings has a bearing on machine
code programming. Computers are designed by people and the code
that controls their operation is also ultimately a product of the
human mind. Hardware organisation to some extent mirrors our
mentalcapacity. Programming, whether in high level languages that
sound like English or in machine code, is the act of translating our
mental processes into a form which can be used by machines and
(ought to be) readily understood by other people. Only by perceiving
clearly the similarities and differences between people and
computers/ programs — and the abilities and limitations of both —
can we interact effectively.

A question of address

Would it be a good idea if your house number, street, postal district,
etc. formed an all-digit postcode that was also your telephone
number, National Insurance number, credit card number, and so
on? It would certainly alleviate the pressure on your memory but just
think of the problems caused by such a system when you moved
house!

We all need to be numbered or addressed in a multitude of ways
for different purposes. Many of the ways say nothing about our
location. Bank account numbers or National Insurance numbers
bear no relation to our home address. Some of the ways in which we
are addressed, however, give varying amounts of information
regarding location. Your full telephone number tells me what
exchange area you live in. Your postcode will take me to a small
group of houses, one of which is yours. Your full address will take
me to your front door. | will have to know your name, age or other
details to single you out from Gran, Mum, Dad, half-a-dozen kids
and a pet goldfish.

There are ways 1 might find you without having to know your
actual address. ‘Third house past the Rose and Crown’ - before
opening time, of course. As long as | know where the Rose and
Crown is, and | go at the right time, 1 will find you.

Your bank account number might not say anything of your
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whereabouts but it could be made to do so. Most of the numbers we
are burdened with cross-reference our name and address and it
works the other way about, too. Your bank manager calls out, ‘Get
me Smith, P. D. Q." - and in next to no time Smith’s overdraft is
staring mockingly up at the bank manager. Figure 1.1 shows the
indirect route taken to get the Smith data.

"SMITH"
(P D.Q.)

NAMES
ACCOUNT NUMBERS

SMITH }

ACCOUNT | ACCOUNTS FILE

t )

Fig. 1.1. Indirect addressing.

Our social organisation has come up with many different methods
of directly or indirectly referring to people, places and things. It is
not surprising that we build computers which utilise some of those
methods.

Half a million bits

Computers based on processors like the 8080, Z80, 6502, 6800 and
6809 have, with all their memory intact, somewhat over half a
million units of information inside them. In fact a little electronic
jiggery-pokery will let us put a virtually infinite number of
information units in these computers, though not all accessible at
the same time. How it is done comes up later in the book but half a
million units will keep us occupied for now.

All this information is useless if it is not organised in such a way
that we can access and use any single unit that we want. Languages
like BASIC come between us and the computer and provide us with
a relatively simple but mysterious informationstorage facility called
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a variable. Some variables will hold numbers and others ‘strings’ of
alphabetic characters. The latter type have to be given names ending
in ‘$’ for some obscure reason. But how BASIC actually stores the
information inside the computer doesn’t bother us: we type in
‘Smith’ and up pops the data on Smith - if we loaded the right
program, of course. Somehow BASIC manages to extract the
‘Smith’ information from amongst those half million units.

The units of informationare binary digits, called hirs. Each can be
either reser (0) or ser (1) - not a very large amount of information!
But just think how the decimal system works: one digit cantellus ten
different things (0, 1,2, 3,4,5, 6,7, 8 or9) buttwo digitscan tellusa
hundred things (00 to 99). Every time the number of digits in use is
increased by one, the number of srares is multiplied by ten. Binary
works in the same way as decimal but with a multiplication factor of
2 instead of 10. A group of 8 bits has 256 different states (00000000,
00000001, 00000010, 0000001 1,00000100, ..., LTITTTT10, THTTNTL).
Notice the use of place value inboththe decimaland binary systems.
Each next digit to the left is worth 10 (decimal) or 2 (binary) of its
right neighbour and when a digit gets too full it is reset to 0 and there
is a carry of 1 to the next higher place. In decimal the carry action
occurs after 9 while it just happens to occur sooner in binary - after
1, in fact.

bit number: 7 6 5 L 3 2 1 [
® [] ® ® ® ® ® ®
ovte — | A A ALALATALALA

[] [ ® [] [] [ [ []
bit value or or or or or or or or
128 64 32 16 8 L 2 1

as 2": 27 26 22BN 7 . 22 2 2¢
Fig. 1.2. Binary place value.

Eight-bit groups are so useful that they are treated as single larger
units of information called hyres. Most machine code operations are
carried out on bytes rather than on individual bits. The 8-bit byte
grouping is the main organisation of computer memory. The
machine code programmer has access to 14 bytes of information
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held inside the 6809 processor and up to 65536 bytes in memory
chips.

Hexadecimal notation

With our 7+/—2 unit ability brains we can fairly reliably distinguish
between binary numbers such as 11010010 and 11010110 (with a
little practice, perhaps!) but when the sequences are extended to 16
bits or more easy discrimination becomes well nigh impossible.

Computers don’t mind bits - but thenthey are made that way. We
prefer to work with symbols which carry a greater amount of
information per symbol so that we can use fewer of them, as in
decimal. The decimal number 210 is much easier to read and
understand than 11010010 which is the binary equivalent. But
translation between decimal and binary is not all that straight-
forward. We cannot simply translate each decimal digit into a
sequence of bits and then butt-join them.

An early attempt at reconciling the computer’s preference for
binary with human cognitive processes came up with ocral or base 8
numbers (decimal is base 10). Three bits have eight different states
which can be directly converted into the eight values (0 to 7) of an
octaldigit. This was doomed to failure, of course, since bytes have 8
bits. This meant that the leftmost octal digit never got above 3. Now
base 16 is more or less the standard and works out quite neatly. Four
bits have 16 states and each byte has two groups of four bits.
Hexadecimal or kex, as the base is called, is not too difficult to work
with once you get used to the letters A, B, C, D, E and F assuming
another role as the digits following on from 9.

Two hexadecimal digits (a hex-pair) represent 8 bits or 1 byte.
Four hex digits have 65536 different states - which is the exact
number of possible 6809 memory locations. Any single memory
location can be uniquely addressed by a 2-byte number (0000 to
FFFF).

One further point. Whenever there is likely to be confusion as to
whether a number is decimal or hex (it may even look like a name
since hex uses some letters) it is usual to precede the hex by ‘$, as in
($0000 to SFFFF).
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Table |.1. Binary - hexadecimal - decimal

Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 | 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
orto 6 6 110 E! 14
(RN 7 7 11 F 15
then
10000 10 16 11000 18 24
10001 11 17 11001 19 25
10010 12 18 11010 1A 26
and so on.

The ingenious uses of ON and OFF

You canregard a computer as a glorified light switch. Allthatany of
its bits can tell you is that it is ON (1) or OFF (0). Its electrical
circuits are either high (probably +5 volts) or low (0 volts). But then
you can regard a human being as a glorified amoeba. The
glorification is that a person’s body cells (or a computer’s bits) are
not entirely separate entities but are interdependent and have
specialised functions. (At this point you might like to read Appendix
A which describes the basic parts of a computer system generally
and the 6809 processor in particular. On the other hand you might
not like to read it.)

Why has no one designed a decimal computer? After all, decimal
is our natural counting system, based as it is on our having ten
fingers (including the thumbs). Actually decimal computers have
been designed, built and used but binary computers are much
simpler. They are easier to design, can make use of the electrical
conductivity properties of such cheap and plentiful materials as
silicon and are not as alien to our thought processes as the red
herring about decimal fingers might have suggested (we don’t use
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contents address
8 bits | 0000
Address Pointer | |,
ADD rd 1
/Pfss
{ /4'5 8 bits | 27AC
8 bits | 27AD
Data
OATA LINE 3F | 274
[F 8 bits | 27AF
8 bits | 2780
8 bits | 2781
Lol
zr 1
8 bits | FFFE
8 bits | FFFF

Fig 1.3. Random Access Memory - direct addressing

place value in finger counting - if we did it would have to be a binary
system).

Did you read Appendix A - yes or no? Are you male or female,
left-handed or right-handed? Is the weather wet or dry? Is the time
day or night, a.m. or p.m.? Our cells, like the amoeba, reproduce by
binary fission (splitting in two) and our neurons either fire ordo not
fire. We are very binary.

Binary decisions arefast,no*hmmm- maybe’. Ateach point where
a choice has to be made there is one simple test with only two
possible results. A computer beating a path to the door of just one
memory location out of 65536 does so in just 16 easysteps, working
from a first test on bit 15 (the leftmost bit of a 16-bit address) down
to bit 0, as in Table 1.2. The sequence is typical of a binary search
process called the ‘binary chop’. At each test exactly half of the
remaining addresses, file records, list entries, or whatever are being
searched are dropped from consideration.
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Tuble 1.2. Binary address selection (SABCD).

Bits tested Group in (hex) Group out (hex)
(high byte)

1 8000 to FFFF 0000 to 7FFF
10 8000 to BFFF C000 to FFFF
101 A000 to BFFF 8000 to 9FFF
1010 A000 to AFFF B000 to BFFF
10101 A800 to AFFF A000 to A7FF
101010 A800 to ABFF AC00 to AFFF
1010101 AA00 to ABFF A800 to A9FF
10101011 ABO00 to ABFF AA00 to AAFF
(low byte)

1 AB80 to ABFF ABO00 to AB7F
11 ABCO to ABFF AB80 to ABBF
110 ABCO to ABDF ABEO to ABFF
1100 ABCO to ABCF ABDO to ABDF
11001 ABC8 to ABCF ABCO to ABC7
110011 ABCC to ABCF ABC8 to ABCB
1100110 ABCC and ABCD ABCE and ABCF
11001101 ABCD ABCC

The chopping sequence of Table 1.2 is shown as a two-phase
operation to highlight another important organisational feature of
the 6809’s memory: pages. Memory is divided into 256 pages which
are numbered by the high order byte of the full two-byte address.
The 6809 has a single-byteregister which can beset to hold any page
number and special Direct Page instructions which need only a I-
byte address to specify any one of the 256 different locations within
the currently addressed page.

Having reached memory location $ABCD, we find that it
contains 8 bits, each one either a 0 or a 1. What can this collection of
bits stand for?

(1) An unsigned value between 0 and 255 (300 to $FF).

(2) A signed value between —128 and +127 ($80 to $7F).

(3) Part of a larger number, perhaps 16 or 32 bits long.

(4) Part of an address (high or low order byte) pointing to another
memory location.
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(5) A collection of individual bits, each of which will light up a dot
on the display screen if it is set.

(6) An ASCII character code (see Appendix D).

(7) A sequence of bits to cause branching in a program.

(8) Part of a machine code instruction.

(9) A voltage pattern for a D to A converter.

(10) Nothing at all.

The last item (10) possibly surprised you. If itdid thenthat meansyou
had assumed the contents of memory location SABCD would mean
something. Quite a lot of human assumptions are wrong but, since
we survive as individuals and as a species, many of them must be
more or less right. Assumption is a major factor in human thinking
it enables us to respond quickly to the real world. Computers don’t
make assumptions, they act on exact data; but programmers are apt
to make the most unreasonable and disastrous assumptions.

T MEMORY BYTE |

UNUSED USED
PLACE BIT
VALUE PATTERN

ANIVAN

DATA ADDRESS CONTROL DISPLAY

YANEVAN

ASCII NUMBER PROGRAM  VOLTAGE

Fig. 1.4. Structuring information.
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That you may have assumed that SABCD contained valid data
was probably my fault for presenting the possible uses (or non-use)
of the memory byte as an unstructured list - useful, perhaps, for
getting a few ideas down quickly and fitting the shape of a book
page, but not much else. Lists of that type don’t show up any
groupings which emphasise the different relationships or associa-
tions between the entries. Even worse, they tend to obscure vital
information, like the need to be sure that the location contains data
and not just rubbish. Data (or information) structures, such as the
hinary tree (see Fig. 1.4), help to make explicit those facts which we
might take for granted and also describe the connections between
items.

Structure is the subject of the next chapter and the types of data
use given in the list are dealt with at various places throughout the
book. The list, by the way, is not definitive: the uses we can make of
bits and bytes are limited only by our imagination.

Out of machine code

6809 machine code consists of a limited set of numerical
instructions, from one to five bytes in length, which the processor
decodes and then acts on. The processor uses the individual bits of
the instructions while we see them as bytes, usually expressed inhex
form. Butpeopleare notverygoodatassociating pure numbers with
specific operations (New York City police excepted - ‘I have a
suspected 159 on Sth and 12th’) even though we might eventually
learn to recognise instructions in numerical form.

All machine code programming is done in assembly language
where each operation type is given a mmnemonic (memory aid)
abbreviation of the action, the CPU registers have names like A, X,
PC, etc. and even addresses and data may have descriptive labels
attached to them. Anassembler will let you program in this symbolic
form and then assemble, or translate, your symbolicsource program
into object code - the actual machine code.

If all you want to dois add a few simple machine code subroutines
to your BASIC programs to speed up games or control external
hardware, you should get by with the process known as hand
assembly. You will still need to use assembler type mnemonics and
labelling in writing your programs on paper but then you do the
tedious job of translation into the numerical code form. DATA
statements can be used along with ashort READ ... POKE routine
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written in BASIC to store the instruction bytes in memory. EXEC,
USR or similar BASIC functions should pass control to the address
you specify.

Hand assembly of larger routines or complete machine code
programs is very laborious. For work of this kind it is practically
essential to use an assembler. The usualfeatures of 6809 assemblers
are described in Appendix B, and Appendix C gives the 6809
instruction set in both assembler and numeric code forms. If youare
not familiar with 6809 instructions then this is a good time to read
those two appendices.



Chapter Two
How to write Machine

Code Programs

The title of this chapter is, perhaps, a little over-enthusiastic since
the art of programming has filled several multi-volume books. All 1
can do here is throw you a few hints - some dos, don’ts, whys and
why-nots - that may help to make machine code programming
somewhat easier than it might otherwise be.

Machine code is a lot more difficult than BASIC for quite a
number of reasons. Here are some of the main ones.

(1) Allof the instructions aresimpler (i.e. they do less) than BASIC
commands, so you need more of them.

(2) BASIC deals with all the addressing for you. In machine code
vou have to decide where to put both programs and data.

(3) BASIC uses English words (more or less) and nice neat
mathematical expressions and so is fairly easy to read even without
REM statements. You need to be amachine to read machine code!
(4) BASIC programs can (but shouldn’t) be written at the
computer. Machine code must be written out on paper first. Even
the best assemblers can show only a few instructions on thescreenat
any one time.

All these reasons suggest that, while you can get away with writing
BASIC programs at the computer by spending an inordinate
amount of time in EDIT mode, machine code must be approached
in amore organised fashion. In fact the actual coding of the program
should not take place until you have worked out a complete
structured design. This might seem a little hard when possible code
sequences are already suggesting themselves to you, but programs
are far easier to change in the design stage than when a lot of code is
already in place.

Another reason for delaying the writing of code until the design is
complete is that it forces you to produce documentation for the
program. Documentation produced in the design stage acts as a
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route map through the program. Without it large programs are
extremely difficult to read and tracing the flow of control(the order
in which various parts are executed) during debugging can be almost
impossible.

Structure is basically of two types. The first type shows the
breakdown of the programinto dependent parts, each of which can
be further subdivided until a complete tree structure exists of the
program. This will not be a binary tree - each part can be divided
into many smaller parts. The second type of structure is developed
from the first and shows program flow.

Program structure

Computers are unaware of any logic more complex ordetailed than
that found in a single instruction. Each instruction is dealt with in
isolation from, and without regard to, any other program
instruction. Structure, then, exists only for the benefit of the
programmer, not the computer.

Structuring a program is a top-down process. Don’t be tempted to
work out a section at quite a low level and then try to fit it in.
Working from the top down means that at each stage you can forget
about a large part of the program and concentrate your efforts on
just one main branch. Follow the branching down religiously,
keeping each part of the program separate. At some point in the
proceedings you might notice that the branch you are working on
includes processes that are the same as those of another branch
already completed. It might seem a worthwhile idea to join these
branchestogether at this point —butdon’t. When you come to design
the program flow the identical parts can be written as a common
subroutine or block of subroutines. Structurally, they are entirely
independent.

There are no hard and fast rules about where and when to divide
into parts. This is where programmingskill comes in. Practice might
not make perfect but it certainly helps you to see where a program
can usefully be split up. Sometimes the divisions are obvious but at
other times, especially in the higher levels, programs seem to defy
you to split them into logically distinct parts. If divisions don't
immediately suggest themselves then a rule of thumb is to aim at
about half a dozen separate parts of equal weight. A short period of
enlarging the scope of some parts at the expense of others,joining up
thinned down parts or further splitting grossly enlarged parts should
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ensue. Eventually you will find the inherent structure of the
program. Why half a dozen divisions? We are back to the ‘Magical
Number Seven, Plus or Minus Two’. It really is difficult to
understand the structure of a program if all the splits are into a
dozen or more parts, sub-parts, and so on. If that appears to be
happening then have a rethink and see if you cannot produce a more
readable structure. After all, the structure is there to help you find
your way easily through the program.

pLOT
PLOT SET
ADD GET
ADDRESSED pLOT
VECTOR ADDRESS POINT FLAG
GET ACT PUT TEST
BYTE ON BIT BYTE BIT
Y-COORD X-C00RO ADO: ORIGIN X-REM
T0 T0 + X-OFFSET AS BIT
Y-OFFSET X=0FFSET - Y-OFFSET PLACE

Fig. 2.1. PLOT structure

Figure 2.1 shows a structure chart of the PLOT routine from the
chapter on high resolution graphics. Subroutines of this kind sit
right at the bottom of the structure tree (structure trees grow
downwards) and usually comprise no more than three or four levels.
The lowest level is at a point whereeach box represents only a dozen
or so instructions at most and preferably only two or three. This is
the point at which to stop dividing. Extending the design to another
level would mean taking into account the actions of individual
instructions. There are three (at least) good reasons for not doing
that: (1) you might later want to write the program for another
processor with very different instruction capabilities, (2) at this stage
you cannot be sure which registers are going to be used nor the way
in which data will be addressed or accessed, and (3) the structure
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chart only shows the interdependence of the parts, not the program
flow which will directly affect coding.

Program flow

Flow charts describe the order in whicheachpart of the program is
dealtwithby thecomputerandareadevelopmentfromthe structure
charts. They don't stick to rectangular boxes but use several box
shapes from a standard set of symbols. You can buy flow chart
templates with about twenty different symbols on them. They

C D

START or END PROCESS

DECISION INPUT or OUTPUT

Fig. 2.2. Main flow chart shapes.

usually have labels giving the meaning or use ofeach symbol. Look
for templates which conform to ISO Standard 1028, ANSI X3.5-
1970 or BS4058. Figure 2.2 shows the four main symbols used in
drawing flow charts. Other symbols are mostly concerned with
differentiating media for storage or display - magnetic tape, visual
display, punched card, etc. The shapes are meant to symbolise
different actions and the order in which the actions are performed is
described by a flow line which commonly has arrowheads to show
the direction of flow. Arrowheads are, however, totally unnecessary
for the flow lines in a structured flow chart and you should avoid
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them like the plague. They allow you to produce unconventional
and pathological structures which are difficult to read and to code.
Flow charts that don’t rely on arrowheads have to be written, or
drawn, to a set of standard constructs which help to make the
subsequent coding clear, simple and quick.

There are three basic types of construct: sequence, iteration
(looping) and selection (branching or decision). Through all these
constructs the general direction of flow is downwards, entering at
just one point (the top) and leaving at just one point (the bottom).

Fig. 23. Sequence

Selection and iteration also have internal lines whichflow left, right
or upwards. Figure 2.3 shows a sequence of three processes. The
flow goes straight down through each process in turn.

Selection, shown in Fig. 2.4, is a binary decision with only two
possible results. Flow is either to the right or left, not both. The left
and right paths do not have to be labelled since the result of a binary
decision is always either false, no, 0 (to the left) ortrue,yes, 1 (to the
right). The flow lines stretch out horizontally far enough to
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(a) (b) (c)

Fig. 2.4. Selection: (a) skip if false, (b} if then ... else, (c) skip if true.

accommodate the width of the different option boxesand then turn
down. At the bottom they turn inwards,join in the centre and exit as
a single line of flow.

Iteration is usuallya REPEAT UNTIL or REPEAT IF function.
The processes repeated have to be performed at least once, as in Fig.
2.5. The internal flow line leaves the end-test decision box on the left
(repeatif result false) or on theright(repeatifresulttrue)and moves
out far enough to clearthe process box. It thenturnsupwardsuntil it
reaches the start of the process to be repeated where it turns back in
to join the downward flow line. A side join always means that the
flow has come from the end of an iteration construct. The other line
leaving the decision box does not come out horizontally from the
other side, as it does in the selection construct. In this case it is a

(a) (b)

Fig. 2.5. Iteration: REPEAT UNTIL (a) true, (b) false.
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Jallthrough line, i.e. the test result matches the UNTIL (or does not
match the IF) condition and flow falls through to the bottom of the
construct. REPEAT UNTIL gives the fallthrough condition.
REPEAT IF gives the looping condition.

The process inside a REPEAT construct is always performed at
least once because the loop-test is at the end. Occasionally we need
an iterative structure which will allow the process to be skipped
entirely with a test right at the start of the construct, before the
process box(es). This is a DO WHILE situation. While a certain
condition applies, the process will be performed. The iteration ends
as soon as the condition ceases to hold. DO WHILE is actually a
composite construct made up of an initial selection for the possible
‘skip process’ and a normal REPEAT IF to determine if the
condition holds for a repeat. Figure 2.6 (a) shows the composite
structure of DO WHILE.

(a) (b)

—_—

—

Fig. 26. DO WHILE true: (a) well structured. (b) pathological.

A pathological form of DO WHILE is oftenfound in flow charts
and is shown in Fig. 2.6(b). It does not conform to good structure
standards in two ways: (I) the loop-back line could turn either right
or left at the point indicated by the question mark and so could cross
the exit line, and (2) the exit is from the side of the construct and
could, without due care, give rise to extreme forms such as that in
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L]

Fig. 2.7. A more pathological form of DO WHILE.

Fig. 2.7. The pathological DO WHILE is used quite a lot in coding
with the justification that a simple 2-byte BRA instruction can
replace a complex test and decision many byteslong. Optimization
of this kind is often necessary when large programs have to be
packed into a small amount of available memory. The flow chart
design, however, should precede coding, particularly any opti-
mization, so only the well-structured forms should be used at this
stage.

Figure 2.8 shows the flow chart constructed from the PLOT
structure chart (Fig. 2.1). All third level actions are incorporated in
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START

VECADD

GET
ADDRESS

[
PLOT
ADDRESSED
POINT

I

SET
PLOT
FLAG

Fig. 2.8. PLOT flow.

the GET ADDRESS and PLOT ADDRESSED POINT process
boxes. Flow charts can be drawn at various stages of the structured
breakdown to illustrate more clearly how program control passes
through any part of the program.
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START

INITIALISE
COUNTS &

VECTORS

CALCULATE
NEXT
POINT

PLOT

DEC
COUNT

Fig. 2.9. LINE flow

PLOT is used repeatedly by the routine LINE to plot each point
on the line it draws. Figure 29 is a high level flow chart showing
where PLOT fits in. The double sides of the PLOT process box show
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that it is a separate subroutine or independent procedure called by
LINE. Even in a more detailed flow chart showing deeper levels the
double sided box remains unexpanded - its structure and flow are
shown on its own different chart.

Coding, testing, debugging

If you have prepared detailed structure and flow charts then this
stage will be fairly straightforward and easy. If you have not you
might end up in a tangle almost as soon as you start.

The lowest level boxes onyourstructurecharts should name tasks
that can be coded in a dozen instructions or less. These short
sequences of code are the basic action routines. They performsome
process or change on data fed to them from the next higher level and
then pass the result back. All higher level tasks are concerned with
some form of management - Which data? Which processes? W hat
order? The entire edifice echoes the worker-management pyramid
structure found in industry.

This distinction can prove important in coding and testing. Most
of the bottom level routines can each be coded and tested in
complete isolation from other parts of the program. Testing is a
matter of inputting test data and checking output result for any
errors, Test data is data at the extremes of the range of data the
routine is designed to act on. For example, a routine which acts on
ASCIIl hexadecimal digits and not other values would need to be
tested with:

$2F (/) $30(0) $39 (9) $3A (1)
$40 (@) 341 (A) $46 (F) $47 (G)

These are the codes attheend of, and immediately outside, the two
groups used for hex digits. Other test data might be values in the
range $80 to $FF which are not used as ASCII codes.

Routines at higher levels should be coded and tested from the top
down. The highest levels will consist mainly of subroutine call
instructions and branches selecting which lower parts to use. Here
again testdata can be fed to the routines beingtested, thistime from
below. Many of the routines called by these levels might not yet be
tested, or even written. They can often be emulated by asimple RTS
(Return from Subroutine) instruction, possibly after setting or
resetting necessary flags in the Condition Codes register by ANDCC
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Table2.1. Monitor commands.

Command

Meaning

Breakpoint

Copy
Dump
Enter

Exit

Fill

Go

Jump
Load
Register
Save
Single-step

System

Trace

Insert Software Interrupt (SWI1) at given address, saving
replaced code byte.

Transfer a block of memory to new location.

Display a block of memory contents in hex.

Direct keyboard input of code or data bytes, either as hex-
pairs or ASCIl

Exit monitor for other system software, e.g. BASIC or
assembler.

Fill a block of memory with one value.

Execute program at address in displayed PC register.
Execute program at given address.

Load machine code program from tape or disk.

Display contents of all registers, allowing them to be
changed.

Save machine code program on tape or disk.

Execute program one instruction at a time, on key press,
displaying all register contents and current instruction code
at each step.

Alter computer system parameters, e.g. print speed, 1/0
rate, display mode.

Print control path of program during execution, i.e. address
of every instruction executed.

and ORCC instructions. Such subroutine szubs are normally all that
is needed to test the logic of the top levels.

The essential tools for coding, testing and debugging are an
editor-assembler and machine code monitor. It is desirable to have
these both resident in the computer in ROM form. Versions which
have to be loaded into RAM fromtape or disk can becorrupted by a
faulty object program. The normal features of 6809 assemblers are
described in Appendix B. Monitors are used on the assembled object
code, not on the source program, allowing you to examine and
change the contents of individual memory locations and registers.
The features to look for in a monitor are given in Table 2.1.
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Program documentation

Structure and flow charts formthe major part of the documentation
for the design stage. They often need to be supplemented by (a)
definitions of the program, data and system on which the programis
to run, and (b) decision tables showing conditions (cause) and
actions (effect) for any complex decisions made in the program. A
full description of this further documentation is beyond the scope of
this book. For a full and very readable treatment of structure and
documentation, I urge you to read the book by Tom DeMarco (see
the Further Reading list).

The design documentation can help in producing documentation
for the assembly language program, the names and descriptions of
processes being transferred straight to the code routines. Documen-
tation of the source program is essential — a bare list of several
hundred assembler instructions is not much easier to understand
than actual machine code.

Each clearly distinct part of the source program should have
header information: its name, brief details of its action or task, the
data input to it and output fromit, any registers or memory changed
by it, names of the subroutines that it calls, the maximum number of
(hardware) stack bytes that it uses and the execution time in clock
cycles if this is important. This information can be given on
complete comment lines preceding the code.

Assemblers also offer the facility of adding comments aftereach
instruction. Use this gift to the full. Thecomments writtenalongside
the instructions should not just describe the individual actions of
each instruction but should also make clear the full task performed
by sequences of code. Using them as a rehydrated version of the
mnemonics will not hold much water when, months later, you need
to update the program and have to work out what the code is
actually doing. The following routine L1234 is an example of
atrocious program documentation.

L1234 LDA #SFB Jload A with 251
STA 2.X ;store A at (X+2)
LDA X Jload A from (X)
ANDA 4320 JAND A with 32
BNE L1235 ;branch if not equal

BEQ L1236 ;branch if equal
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Rewriting itas CHKEY Zinforms you of what thesequenceis doing.

CHKEYZ - test for Z key press. X = $FF00

CHKEYZ LDA #o%11111011 ;write Z col. mask to out-reg.
STA 2,X :at $FF02 and read rows-in
LDA X sfrom reg. at SFF00. Mask
ANDA #9%00100000 ;out non-Z rows, then branch
BNE NOKEYZ ;to “Z not pressed” or else
BRA KEYZ :to “Z pressed” routines.

Other differences between the routines are (a) CHKEYZ and the
other labels used are abbreviations of the actions performed or the
special entry conditions of the routines but L1234, L1235and L1236
are meaningless, (b) binary numbers are used in CHKEYZ to draw
attention to the fact that it is the bit-patterns and not numerical
values that are being used, and (c) the use of BRA in CHKEYZ
informs you that there is no fallthrough from the routine whereas
this fact is not at all clear in the L1234 routine.

Now that the actions of the routine have been made plain it is
obvious that the program is badly structured. Unless either
NOKEYZ or KEYZ immediately follows CHKEYZ, the routine is
doing two jobs - checking for Z key press and selecting from two
processes. The use of indexed addressing to write to and read from
the PIA registers at $FF02 and $FFO00 is also unnecessary since
those addresses are fixed, and it means that the routine depends on
the X register being set at $FF00 on entry. These problems should
have been sorted out during the program design stage. Good
programdocumentation can highlight design errors - bad documen-
tation would only hide them deeper.

Data

Purists regard dara strictly as the plural of darum but computing
convention has it as singular, collective, abstract or descriptive, so it
is quite usual to say ‘data is’ rather than the grammatically correct
‘data are’. Data can be of three types: consrant, variable and an
inbetween sort referred to as parameter. Our old friend PLOT can
again be helpful as an illustration since it uses allthreetypes of data.

Constant data never changes. It can be written straight into the
programcode if necessary - for example, LDA #$FB - butthereare
often good reasons why it shouldn’t be. In PLOT, the conversion of
the y coordinate to a vertical offset from the origin address requires,
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as constant data, the line increment value. This is the difference
between the addresses of two vertically adjacent screen locations
and while the line increment may not be the same on different
computers it is a constant within any particular computer. PLOT
also uses an eight-byte table of constant data. Each byte in thetable
has one set bit corresponding to one of the eight possible dot
positions in one screen location. This too remains unchanged.

Variable data is that which can take different values every time a
code sequence is executed. It is usually input to a routine as values
held in accumulator or index registers. Sometimes a routine may
have to pick up variable data from memory. The vector input to
PLOT in the form of register values is variable and so are the co-
ordinates of the last point plotted which PLOT reads from memory.

Parameters are data that define or limit the action of a routine.
The vector and co-ordinates are really parameters but the term is
often kept for data which changes less often. Parameters in PLOT
include the origin address and the number of horizontal and vertical
dots on the display area. These are constant for long periods,
perhaps for the entire program, but they may be changed to use
different screen pages (in the Dragon or TRS-80 Color Computer)
or to limit the size of a display window on the screen.

In a complete program constant data and parameters may need to
be accessed by several routines. Common data of this sort should be
put in a reserved area. Computer operating systems are often fixed
in ROM and cannot be changed so their s ysrem variables or system
parameters are written to an area of RAM where they can be
accessed, and altered if necessary, by any of the routines in the
system. Corrupting this data can cause a system crash.

Constants limited to a single routine can be written into
instructions as immediate data (Immediate addressing mode). If the
same data is used several times during the routine it should be
equated to alabel in the source program before the first instruction.
The assembler will insert the actual data in the instruction when it
meets the label as operand.

BSDATA EQU 10 ;base 10 data used in BASADJ
BASADJ LDD X \pick up value to adjust to
CMPB BSDATA ;base, if lo-digit is less
BCS SADVAL ithan base then skip, else
SUBB BSDATA :adjust by subtracting base
INCA ;and inc'ing next place digit
SADVAL STD WX re-store adjusted value

RTS ;and end routine.
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RASADJ adjusts the low order digit of a two-digit value picked up
in the D register (A with B) to a base BSDATA. If we want to use a
different base (any base from 2 to 255) only the value equated to
BSDATA need be altered.

Routines often need workspace for temporary storage of
variables and intermediate results. If the workspace requirements
are only small - say, half a dozen bytes or less - then the 6809
hardware stack is as good a place as any. The hardware stack pointer
S can be used inexactly thesame way as any of the index registers, X
and Y, or the User stack pointer U with the Indexed and Indirect
addressing modes. However, you should never use memory
immediately he/ow the current stack position. Any interrupt
occurring will stack the contents of the entire register set (or just PC
and CC in a fast interrupt), overwriting and corrupting your
workspace. The Dragon and TRS-80 Color Computer Timer
function works by an interrupt every Y, second. If more than half a
dozen bytes of workspace are needed a special area ought to be
reserved immediately after the routine, or in a common area for use
by several routines, using the assembler directive RMB.



Chapter Three
Number Crunching

Simple arithmetic is a fairly straightforward process which doesn’t
involve any computer hardware other than RAM and the processor
itself, but it does bring in some commonly used and very important
methods of memory addressing and program control so it is a good
subject to start with.

The 6809 is an 8-bit processor and most of its instructions act on
only one byte of data. It does have instructions to add, subtract and
compare 16-bit (double byte) values but these are designed primarily
for manipulating addresses. The processing of multi-byte values is
usually best done inside a loop which deals with only one byte ata
time although there are exceptional cases where 2-byte chunks can
be processed.

MBADD adds the multi-byte binary number indexed by Y to that
indexed by X and stores the result at a third location indexed by U.
The values must all be the same length and this is input into the
routine in B. An initial test is carried out on B to see if it is greater
than $7F (127) and if it is then the routine aborts. This is because the
accumulator offset indexing uses B as a signed value in the range $80
to $7F (—128 to +127) and if a negative value were used then
memory below the addresses in U, X and Y would be changed. With
only positive values of B valid, the loop end test is on the state of the
negative flag N which is 0 for all valid B and goes to | immediately
after the highest order bytes (at U, X and Y) have been processed and
B is decremented to $FF (—1). Before exit, B is incremented to set the
zero flag Z and reset N to show that the addition has been
performed.

MBADD - Multi-byte binary addition
Stack — 1.
//O - Value at X plus value at Y stored at U.
B indexes the low order bytes from X, Y, U
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(B = no. of bytes - 1). Invalid if B> $7F.
Output Z=0, N=1: input B too big (B > $7F)
Z=1, N=0: add done, C = any carry out.

MBADD PSHS A save A contents while A used.
TSTB :make sure B is valid (B < $80)
BMI MBAEND .end Z=0, N=1 if it is not.
ANDCC #%II111110 ;no carry in to addition.

:loop, processing each value place byte from lowest at
‘R + B (R is U,X.Y) to highest at R + 0 (When B = 0),
:including carry from previous bytes addition.

MBALP LDA B.X .get Ist argument byte, add with
ADCA B.Y icarry byte from 2nd argument
STA B.U ;and store to 3rd argument.
DECB iindex next higher order bytes
BPL MBALP ;repeat till all added.

iset Z, reset N to show addition done. C unaffected by INC.
INCB iset valid output flags.

MBAEND PULS PC,A ;exit MBADD, restoring A.

MBADD shows the basic form for any process which picks up a
string of bytes from one area, performs some change or
transformation on them (perhaps with reference to a different string
elsewhere) and then stores the new values in adifferentarea. A few
simple changes are all that is needed to make the routine do various
other things. Forexample, changing ADCA B,Y to SBCA B.Y turns
MBADD into MBSUB - multi-byte subtraction. The result of the
operation need not go intoathirdarea. Replacing STA B,U by STA
B.X will put the result back to the first argument. Deleting ADCA
B,Y from the routine turns it into a string transfer routine, moving
up to 128 bytes from an area indexed by X to one indexed by U.
Other methods of moving memory are shown in later chapters.

Multiplication and division

It is not very likely that you will need to multiply values up to 128
bytes in length but 8-bit and 16-bit multiplication and division
routines are often needed. The 6809 is much more sophisticated than
the other common 8-bit processors in that it boasts an 8-bit
multiplication instruction M UL which executes very quickly in only
11 clock cycles. Eight-bit division and 16-bit multiplication and
division can only be done by agonisingly slow software methods.
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DIV AB is an 8-bit division routine (A remainder B := A / B). The
action is the binary equivalent of the normal long division method,
except that shift and rotate instructions are used to move the
dividend (A) over the divisor (B) instead of B being shifted down
under A as is normally done in a decimal paper-and-pencil long
division. Being binary, the divisor can either not be subtracted from
the dividend or can be subtracted only once at each digit place. The
result of each subtractionthat‘goes’is a set bit (1) and the result bit is
0 if the subtraction does not go. Since the dividend is being shifted
out of A by one bit in each iteration, the quotient can be shifted into
A as each bit is determined. After all eight dividend bits have been
shifted from A into B, the complete 8-bit integer quotientisin A and
B holds the remainder.

DIVAB - 8-bit unsigned binary integer division
Stack - 3.
//O - Input A is the dividend, B is the divisor.
Output A is the integer quotient, B the remainder.
Notes - If the divisor is zero then output A= $FF and remainder B
= input A. Division by zero is normally considered an

error.
DIVAB PSHS B.CC :save flags, put divisor on stack
LDB #8 iset up count for 8 bit-shifts
STB -S ;on stack (“push™ count).
CLRB .clear accumulator/remainder.

Jloop 8 times. attempt subtraction of divisor at each digit
;place, forming quotient one bit at a time.

DABLP ASLA :shift next dividend bit to
RORB :remainder, clearing quot. bit.
CMPB 2S stest if divisor can be subtracted
BLO DABLPT sfrom remainder, and only if it
SUBB 2.5 ican, subtract and set quotient
INCA ;bit at corresponding place.

DABLPT DEC .S repeat till all dividend shifted
BNE DABLP :and A now quotient.

;put remainder into stacked B (originally divisor) for

;pulling. Clear count byte, tidying stack for pull.
STB 2,S pulled B to be remainder.
LEAS .S ;bump S to removecountbyte.
PULS PCB.CC sexit, restoring registers.

Sixteen-bit division is done in exactly the same way but, of course,
needs 16 iterations. Multiplication done bit by bit is somewhat the
reverse of division; the multiplier is shifted out one bit at a time and
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DIVIDEND BIT
REMAINDER DIVIDEND \
\ QUOTIENT
subtract
DIVISOR QUOTIENT BIT

Fig. 3.1. Binary long division.

if the current bit is set then the multiplicand is added in to the partial
product. The two operations are shown symbolically in Figs. 3.1and
3.2,

PRODUCT
M 3
ULTIPLIER\ T
\ PRODUCT
add
MULTIPLIER BIT MULTIPLICAND

Fig. 3.2. Binary long multiplication.

DIVXY - 16-bit unsigned binary integer division
Stack - 8.
1/O - Input X is the dividend, Y is the divisor.
Output X is the integer quotient, Y the remainder.
Notes - Division by zero results in output X = $FFFF and
Y = input X (dividend).

DIVXY PSHS Y., X,D,CC isave registers used.
LDB #310 :set up count for [6 bit-shifts
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PSHS B :on stack, since A and B used
CLRB ;as 16-bit accumulator/
CLRA ;remainder (D).

sloop 16 times, try to subtract divisor at each digit place,
sforming quotient one bit at a time. Quotient shifts in as
:dividend shifts out.

DIVLP  ASL 5.S ;shift next dividend bit through
ROL 4.S .into remainder (D), clearing
ROLB :next quotient bit at bit 0 5,S.
ROLA
CMPD 6.S stest if divisor can be subtracted
BLO DIVLT ;and skip (Q bit = 0) if not,
SUBD 6.S :else it can so subtract and set
INC S5,S :Q bit at corresponding place.
DIVLT DEC S repeat until all dividend
BNE DIVLP ;shifted. D now remainder.

;put remainder into stacked Y (originally divisor) for

:pulling quotient and remainder in X and Y. Clear count

:byte of f stack so stack ready for pull.
STD 6,S :remainder to stacked Y.
LEAS IS :remove byte workspace offstack.
PULS PC,YX,D,CC exit, restore with Q and rem.

MULXY - 16-bit unsigned binary integer multiplication

Stack - 8.

1/0O - Input X is the multiplier, Y is the multiplicand.
Output X and Y contain the 32-bit product.

MULXY PSHS YX.,D,CC isave registers, put arguments
LDB #16 ;on stack. Set up 16 loop count
PSHS B :on top of stack. Clear accum.
LDD #0 :for forming product.

Jloop 16 times, shifting partial product up one place and
;next multiplier bit out to carry flag C. If multiplier bit
iset then add multiplicand in at correct place. Partial
;product does not interfere with shifting out multiplier.

MULLP  ASLB ;shift partial product up
ROLA sthrough D and stacked multiplier
ROL 5,S ;which shifts up to accommodate
ROL 4.5 :and gets next place bit to C
BCC MULLT :no add in if place bit is 0,
ADDD 6.S selse add multiplicand in to
BCC MULLT scorrect place and take care of
INC 5.S ;any carry up through higher
BNE MULLT ;order bytes of product, carry

INC 4.S ;won’t reach multiplier bits.
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MULLT  DEC .S repeat until all multiplier
BNE MULLP :shifted out and processed.
.put low order two bytes of product into stacked Y (input
:multiplicand) for pulling 32-bit product in X and Y.
STD 6.S .put product lo-bytes to stack
PULS B iclear loop count off stack.
PULS PC.Y.X.D,CC exit, restore with XY = product.

MULXY uses the normal method of multiplication where there is
no multiplication instruction to do the job. But since the 6809 does
have an 8-bit MUL instruction a different method can be used
multiplying complete bytes at a time and adding the results in at the
correct places. MBYBY does this for an 8-bit by 16-bit
multiplication (B and Y := B * Y). The formula for the 24-bit
product is:

(B * Yhibyte * 256) + (B * Ylobyte)

The method can be extended to a 16-bit by 16-bit multiplication or
even further, but it is a long routine. The advantage is in speed - the
byte method executes about twice as fast as the bit method. You
pays your money and you takes your choice!

MBYBY - 8-bit by 16-bit unsigned binary integer multiplication
Stack - S.
110 Input B is the multiplier, Y is the multiplicand.

Output B and Y contain the 24-bit product.

MBYBY PSHS Y.D.CC save regs and stack arguments
LDA 48 :get multiplicand lo-byte and
MUL :mul by multiplier (in B) to get
STD 3S part product to low 2 bytes.
TFR Y.D .get m'cand hi-byte to A and
LDB 2.8 :m'plier to B, then clear
CLR 2.8 ;product hi-byte for add in.
MUL :mul hi-byte and do add in to
ADDD 2SS :product high 2 bytes, back on
STD 2.8 stack for pulling to B and Y.

PULS PC.Y.D,CC :exit, restore with product.

Pseudo-random numbers

True random numbers are very difficult to come by so the usual
approach is to generate a series which exhibits minimum regularity.
This subject has produced much discussion in the machine code
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series ‘PCW SUB SET' in Personal Computer World (essential
reading for assembly language programmers) where the conclusion
was drawn that reasonably efficient 16-bit and 32-bit pseudo-
random number generators could use the series

Riv = (1509R; + 41) mod 2!'¢
and
Rist = (69069R; + 41) mod 232

Modulus (or mod) 2'¢ arithmetic is extremely simple in machine
code. It means the remainder left after dividing a number by 65536,
and that is exactly what you get if you just take the two lowest bytes
of any result as the answer and discard bits 16 upwards. Mod 232 is
the same but keeping the four lowest bytes.

Routines to generate both 16-bit and 32-bit random numbers on
the 6809 appeared in ‘PCW SUB SET' in May 1984. In both
routines the numbers were held in memory indexed by U. But, of
course, a routine can work on a 16-bitvalueinputin a register and
that is what RANDOM does in order to produce a pseudo-random
number at maximum speed - ideal for determining the random
attack patterns of alien invaders.

The constant multiplier of the last random number (or seed),
1509, can easily be factorised to simplify the calculations:

1509R = (2*3* 256 *R) —(3* 3*3*R)

The multiplications then reduce to the quicker shift, add and
subtract operations.

Random - 16-bit pseudo-random number generator

Stack - 3. Clock cycles - 75.

1/0 - Input D is the previous random number or seed.

Output D is the new random number, negative flag N is set
if D> $7FFF, zero flag Z is set if D = 0.

Notes - Generator series Ri.i = (1509R; + 41) mod 65536 is effected
by using the identity, 1509 = (6 * 256) — 27, and then using
shift and addition instead of multiplication. Clock cycles
are given against each instruction.

RANDOM PSHS D 7, (S =R
ASLB 12,
ROLA 2, D=2R
ADDD .S 6, D=3R
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STD .S 5, (S)=3R

ASLB 12,

ROLA 2, D=2*3R

PSHS B 6. (S) = 2*256 * 3R (hibyte)
ASLB 12,

ROLA 2, D=4*3R

ASLB 2,

ROLA 2, D=8%*3R

ADDD 1S ;7 D=9*3R

STD .S 6., (StI)=3*3*3R
PULS A :6,

LDB #41 2, D= 2%*256*3R +4lI
SUBD S++ 9, ... —9*3R.Tidystack.
RTS :5, exit, D = new R.

Thesamemethodcan be used fora 32-bitrandomnumber generator
withinput and outputin, say, the X and Y registers but the execution
time will be more than double that of the 16-bit routine. RANDOM
should prove adequate for any game since the series repeats only
after 65536 different values.

The fact that it is a repeating series and will always produce the
same sequence given the same starting value is a problem common
to all pseudo-random number generators. Unless the computer
system has some hardware device which can be assumed to have a
different state each time a program is run - such as an on-board,
real-time clock - then the usual method of finding a new seed is to
seek keyboard input. Video display and keyboard reading are
subjects for later chapters. For now, assume a message printing
routine which asks for any key to be pressed and a routine to test for
a keypress. The following program sequence will then produce a
different value each time the program is run.

JSR REQUST  ;go print input request.
SEEDLP ADDD #! ;continue to increment seed

JSR KEYCHK  :until keypress check results

BEQ SEEDLP :in finding request met, then
;continue program with unique seed in D.



Chapter Four

PlAs, SAM and Folding
Memory

When you use BASIC, the technical or hardware side of the
computer is almost totally hidden. This helps to make BASIC
programming the relatively easy jobthatitis butitdoespreventyou
from taking direct command of the computer. Machine code
programming, on the other hand, puts you in full control of the
whole system. Thecatchisthat you have toknowmorethanjustthe
particular language used by the microprocessor: you need to know
how to use the other hardware devices in the system.

Microcomputer systems are technically quite complex. Even an
inexpensive home computer has a lot more to it than just a
microprocessor and a few memory chips - forexample, the parts list
of the TRS-80 Color Computer takes up six (large) pages of the
Technical Reference Manual (available from Tandy stores,
Catalogue number 26-3193). Twenty-nine of the parts are integrated
circuits, including the MC6809E CPU, two MC6821 PIAs and a
MC6883L SAM. The CPU is, of course, the microprocessor. The
PIA and SAM chips are good examples of /nput/Outpur and
Svstem Control devices which are discussed in general terms in
Appendix A.

The 6820/6821 Peripheral Interface Adapter

The PIA is one of the most common parallel 1/O devices used in
6809 systems. Parallel devices can input or output eight bits (one
byte) of data simultaneously. They canalso be used to emulate serial
devices - which input or output a sequence of bits one at a time - by
software control of just one line. The difference between the 6820
PIA and the 6821 PIA is only technical. As far as the programmer is
concerned, the 6820and 6821 are the same. The Dragon and TRS-80
Color Computer each have two 6821 PIAs, occupying the same
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locations and configured similarly in both systems. The uses made
by the Dragon of the PIA illustrate its extreme versatility so after a
brief and, 1 hope, not too technical description of the PIA, we will
look at what the Dragon does with it.

The PIA consists of two 8-bit ports, A and B, which can be
considered identical for most purposes. Port A is usually configured
for input and port B for output of data. Each port has three registers
and occupies two memory locations as shown in Table 4.1, and this
means that normal Read/ Write memory is absent at the addresses
used by the PIA. It is the usual practice to locate PIAs and other
memory mapped devices well away from User-RAM. Nevertheless,
you must always be careful, especially when using Indexed or
Indirect addressing, not to write data accidentally to an I/O or
control device or you could crash the system.

Since the Peripheral and Data Direction registers share the same
address, both cannot be used at the same time. There is a good
reason for this. The DR bits determine whether the corresponding
PR bits are input or output. If a DR bit is reser (0) then the same-
place bit in the PR is aninpuz bit; if the DR bit isser (1) then the PR
bit is an outpur bit. Consequently the PR can be set to include a
mixed pattern of input and output bits. Once the system has been
initialised to a specific PR input/output configuration, the DR can
be hidden behind the PR to ensure that no accidental change takes
place. Obviously there has to be some way of selecting which of the
DR and PR you want to address and bit 2 in the port Control
Register (CR-2) is used to switch between the Direction and
Peripheral Registers, as shown in Table 4.2. RESET of the system
(as at power-up) clears the CR, thus automatically selecting the DR
ready for initialisation.

The following code sequence will configure a PIA port A so that
bits 7 to 4 of the Peripheral Register are input lines and bits 3to O are
output lines. Note that bit 2 of the Control Register must be cleared
(reset) and set using bit logic operations so that no other CR bits are
affected.

LDA CRA sclear CRA-2 to address DRA
ANDA  #%I1111011 ;without changing any

STA CRA ;other CRA bits.

LDA #%00001111 ;make PRA-7 to 4 input and
STA DRA :PRA-3 to 0 output by

LDA CRA ;writing to DRA. Re-address

ORA #%00000100 ;PRA without changing
STA CRA ;other CRA bits.
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Tuable 4.1. P1A registers with Dragon addresses.

Port Registers Dragon Addresses
PIA 0 PIA 1

A Peripheral Register (PRA)

or } SFFO00 $FF20

Data Direction Register (DR A)

Control Register (CRA) SFFO1 SFF21
B Peripheral Register (PRB)

or SFF02 SFF22

Data Direction Register (DRB)

Control Register (CRB) SFFO03 SFF23

Tahle 4.2. P1A register select (CR-2).

CRbit 2 Register selected

0 Data Direction Register
1 Peripheral Register

Now we caninputand output up to eight bits of dataatatime to a
peripheral (keyboard, remote terminal, disk drive, etc.) by reading
from or writing to a Peripheral Register in the PIA. The problem is
knowing when to send the data or receiveit. A 6809 CPUrunningat
2MHzcan transfer datafrommemory through an outputconfigured
PR at speedsinexcess of 180000 bytes a second but the peripheralon
the receiving end could be a slow printer tapping away at only 12
characters a second. So how can the P1A - the chip in the middle
reconcile the two?

The A and B ports are not, in fact, limited to just the eight /O
lines running from each Peripheral Register. There are two further
lines to each port, connected this time to the Control Registers.
These control lines are used for interrupt and handshaking signals
and may also be used to output a steady voltage.

When interrupt and/or handshaking signals are used the fast
CPU can get on with other processing tasks while waiting for a
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‘ready’ signal from a slow peripheral. If an interrupt is used the
peripheral can command the CPU to stop whatever it is doing and
jump to a routine dealing with the peripheral’s request, resuming the
interrupted task when the request has been dealt with. If interrupts
are not used the program being run must periodically check for a
ready signal indicating that a handshake process has begun.

In an input handshake the peripheral puts data on the data lines
and a ready signal on a control line (this may cause an interrupt).

Table 4.3. Control of PIA interrupts on control lines C! and C2.

Ccl G2 Control Register (CR) bit use

flags
CR-7 CR-6 Transition (interrupt occurred) flags.
Set (1) by control line transition.
Reset (0) by CPU read of Peripheral Register.
contro} bits
CR-5 C2 input select (CR-5 = 0). CI always input.
CR-1 CR-4 Select effective transition:
If CR-1 (CR-4) = 0 then high to low.
If CR-1 (CR-4) = 1 then low to high.
CR-0 CR-3 Interrupt disable/enable:
If CR-0 (CR-3) = Otheninterrupts disabled.
If CR-0 (CR-3) = | then interrupts enabled.

After the CPU has read the data it sends an ‘acknowledge’ signal
back to the peripheral. The peripheral does not send further data
until it has received the data acknowledged signal. In an output
handshake the peripheral puts a signal on a control line to say that it
is ready to receive data. The CPU then puts data on the data lines
and a data ready signal on a control line. In both cases it is the
peripheral which sends the first control signal and does the waiting.

The PIA has an automatic mode where reading data from the
PRA causes a data acknowledged signal to be sent and writing data
to the PRB causes a data ready signal to be sent. This is the only
difference between the A and B ports.

Control line 1 is input only and is usually tied to the IRQ or FIRQ
interrupt lines of the CPU. Any transition (change in the voltage
level) on it sets a flag in bit 7 of the PIA Control Register (CR-7).
CR-7is cleared only by a CPU read of the Peripheral Register. Two
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Table 4.4. Automatic output signals on PIA Control line 2.

Control bits Control line 2 (CA2 or CB2)

CRA-4 CRA-3 CA2signals

0 0 Low (acknowledge signal) after CPU read
from PRA until transition on CAI.
0 1 Low for I cycle after CPU reuad from PRA.

CRB-4 CRB-3 (B2 signals

0 0 Low (acknowledge signal) after CPU wrire
to PRB until transition on CBI.
0 1 Low for 1 cycle after CPU write to PRB.

bits in the Control register, CR-I and CR-0, are used to control
interrupts on line 1. Control line 2 can be either input (CR-5=0) or
output (CR-5=1). As an input line it behaves like line I except that
CR-6 is the flag and CR-4 and CR-3 the control bits. Table 4.3
summarises PIA interrupt control.

When bit 5 of the Control Register is set (1), Control line 2 is an
output line and CR bits 4 and 3 serve different purposes. Bit 4
determines if the signal will be automatic (CR-4 = 0) or software
controlled (CR-4 = 1). Automatic signalling is shown in Table 4.4.
With line 2 under software control the signal is constantly low (0
volts) when CR-3 = 0 and constantly high (usually +5 volts) when
CR-3 = 1. Control line 2 can thus be used as an off/on switch by
setting bits 5and 4 of the Control Registerand writinga switch bit to
CR-3: 0 = OFF, I = ON.

PIA and the Dragon

The Dragon keyboard is a simple matrix connected to both
Peripheral Registers of PIA 0 (see Table 4.5). Any single column can
be activated by writing a zero to the corresponding bit of PRB,
making sure that all other bits are ones. Bits 6 to 0 of the eight bits
input from PR A will be all set (ones) if no key in that column is being
pressed. If a key is being pressed then a reset (0) bit in the input data
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identifies the keyboard row. Bit 7 of the PRA is used for joystick
comparison and may be 0 or 1. The whole keyboard can be scanned
by iterating eight times and writing a zero to a different column in
each iteration. This way, any combination of the S2 keys can be used
simultaneously and identified.

Table4.5. P1A1/0 on the Dragon keyboard.

PIA 0 PRA PIA 0 PRB

Row input Column output 1o kevboard

from 7 6 S 4 3 2 I 0
keyboard | | : i ' ! I I
? — L] . - - - - =
6 - shift * * * *  break clear enter
5 # space  — i | ! z Y X
4 - wW VvV U T S R Q P
g (@] N M L K J | H
2 G F E D C B A @
- : - 0 '. : 9 8
0 = 7 6 5 4 3 2 1 0

* not used.

TRS-80 Color Computer keyboard has a different arrangement.

The following two subroutines check for either the BREAK key
being pressed (BRKCHK) or the key identified by row and column
(KEYCHK). The pattern of keys pressed has to match exactly the
input patterns or Z will be returned reset. To test for any keypress,
make B = 0 and A = $FF then output Z will be set if no keys are
pressed and reset if any are.

:BRKCHK - check BREAK press. Output: Z=1 if BREAK.
:subs: KEYCHK.

BRKCHK PSHS D Save A & B. Load A & B with
LLDA #%I10111111  ;patterns to exclusively
I DR #%!11111011  :identify BREAK key
BSR KEYCHK :in KEYCHK action.

PULS PCD .exit, Z=1 if BREAK.
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;KEYCHK - check key press. Input: A, B = row, cols pattern.
;output: Z=1 if key(s) pressed match pattern.

KEYCHK PSHS D ;Save A & B. Write cols to PRB
STB $SFF02 sfrom B. EOR read of PRA clears
EORA  $FF00 sequal bits, sets different bits.
ANDA #%O0I1111111 clear unused line, bit 7.
PULS PC.D sexit, Z=1 if match.

Unfortunately, the keyboard is not the only device to use PRA
and PRB. The joystick fire buttons are tiedinto PRA-0 and PRA-I,
making it hazardous to attempt using both at once. Since it is
unlikely that you would want to use joysticks and keyboard at the
same time, though, the PIA bits can serve two functions. Similarly,
PRB is used both to activate the keyboard and for sending data out
to a printer - several control signals ensuring that the two functions
are not confused. Tables 4.6 and 4.7 show the uses the Dragon
makes of its two PlAs.

Table 4.6. Dragon PIA 0 uses

Birs Uses

PRA-0 Keyboard row input. R. joystick fire button.
PRA-I Keyboard row input. L. joystick fire button.
PRA-21t0 6 Keyboard row input.

PRA-7 Joystick comparator.

CRA-0 . .

CRA-1 } TV horizontal sync control bits.

CRA-2 DRA/PRA select.

CRA-3 (CA2) M UX select lo-bit. (sound, joysticks)
CRA-4 set Makes line CA2 an output switch
CRA-5 set } under software control of CRA-3.
CRA-6 not used (CA2 is output).

CRA-7 (CA]) Horizontal sync interrupt flag.
PRB-0 to 7 Keyboard column output. Printer output.
SR } TV frame sync control bits

CRB-1 ’

CRB-2 DRB/PRB select.

CRB-3 (CB2) MUX select hi-bit. (sound, joysticks)
CRB-4 sel Makes line CB2 an output switch
CRB-5 sel under software control of CRB-3.
CRB-6 not used (CB2 is output)

CRB-7 (CBI) Frame sync interrupt flag. Timer.
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Tuble 4.7 Dragon PIA | uses.

Bits Uses

PRA-0 Cassette data input.

PRA-1 Printer strobe.

PRA-2to 7 Six-bit D/A. (sound, joysticks)

gﬁ'::? } Printer acknowledge control bits.
CRA-2 DRA/PRA select.

CRA-3 (CA2) Cassette motor control.

CRA-4 sel Makes line CA2 an output switch
CRA-5 set } under software control of CRA-3.
CRA-6 not used (CA2 is output).

CRA-7 (CAl) Printer acknowledge flag.

PRB-0 Printer busy.

PRB-I Single-bit sound. TV sound sensor.
PRB-2 16K/32K RAM select.

PRB-3to 7 VDG control.

g":g:? } Cartridge interrupt control bits.

CRB-2 DRB/PRB select.

CRB-3 (CB2) Sound enable.

CRB-4 set Makes line CB2 an output switch
CRB-5 set } under software control of CRB-3.
CRB-6 not used (CB2 is output).

CRB-7 Cartridge interrupt (detect) flag.

The Dragon does not need a particularly complex system of
interrupt and handshake signals so the designers have used Control
line 2 of all four ports as switches of one kind or another. Thatis the
reason why CR-4 and CR-5 are always set and CR-6 is not used.
Writing azeroto CR-5would make C2 aninput line, disablingitas a
switch. Writing a zero to CR-4 (with CR-5 = 1) would make output
automatic and a signal would be sent out every time the CPU read
from PRA or wrote to PRB. Changing the configuration of the C2
lines would disable sound, joysticks and cassette motor control.

The 2-bit configurations 00,01, 10and 11 can be writtento CRB-3
and CRA-3 (Control Register bit 3 in both B and A ports of P1A 0)
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along with a single-bit sound enable (set CRB-3, P1A 1) to produce a
four-state sound select system. The lines are tied to an analogue
multiplexer (MUX) which selects between the 6-bit D/A converter,
cassette, cartridge or a non-implemented fourth device as a sound
source. The sound enable bit (CRB-3, PIA 1) is, of course, Control
line 2 from the second P1A’s B port used to switch on or switch off
the sound. Control line 2 from the A port of P1A 1 is also used as a
simple on/off switch, this time for computer control of the cassette
motor (MOTORON, MOTOROFF).

This, I'm afraid, is where we must leave the Dragon’s fascinating
P1As for now and move ontotakealook at what SAM is doing. The
Dragon and TRS-80 Color Computer books in the Further Reading
list will tell you more about the uses made of the PIA by these two
similar computers.

The Dragon and SAM

The use of the rather familiar term ‘SAM’ instead of his - sorry!irs -
grandiose title Synchronous Address Multiplexer (His Excellency,
the Controller of the Dynamic RAM) reflects the fact that itis a very
user-friendly chip, even though it performs a complex and
sophisticated job behind the scenes. It is SAM that provides the two
clock signals £ and Q which keep the 6809 CPU ticking over at a
steady rate. Because of this, SAM can be programmed to make the
CPU run at different speeds. A word of warning here: not all
Dragons can be speeded up - they are only guaranteed to work at 0.9
MHz.

The Eclockcycleisused by SAM to controlaccess to the dynamic
RAM used for both program and screen memory. The 6809 CPU

high

low

VDG refresh VDG refresh

Fig. 4.1. CPU and VDG access to and refresh of dynamic RAM.
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must access the memory every cycle and the Video Display
Generator (VDG) must access it at least every two cycles. Also,
dynamic RAM has to be refreshed every cycle or its contents will
decay. Themultiplexing, or interleaving of access, is performed by
SAM allowing the CPU access on the high period of each E cycle
and the VDG access on alternate low periods. VDG access also
refreshes the RAM and in the remaining low periods the refresh is
performed by SAM. All this is achieved by routing the address bus
from the CPU through SAM and having SAM produce the
necessary signals to get data on the data bus when it is needed by the
VDG.

VDG access and refresh are transparent actions to the CPU and
the programmer - they don’t affect the execution of instructions in
anyway andtheyare beyond software control. Because SAM is used
to emulate the VDG, however, it can be programmed to add an
offset, in %,K increments, to the addresses used as screen memory.
One drawback to this system is that SAM has also to be
programmed to give the correct signals for the graphics mode
currently operating in the VDG. Almost every time you alter the
VDG mode by writing data to PRB-3 to 7 of PIA 1, the amount of
memory used for display is changed and consequently you have to
reprogram SAM - unless, of course, you are experimenting with
strange graphics effects.

So how is SAM programmed? Not in such a complicated way as
the PI1As but by a quite unusual method. SAM hassixteensingle-bit
registers spread out through 32 memory locations ($FFCO to
$FFDF) - two addresses foreach bit! In fact the memory locations
aren’t there at all. SAM uses the bit patterns coming in on the
address bus as a form of data and singles out $FFCO through
SFFDF as SAM control data bits. Bits 1, 2, 3 and 4 give the SAM
control register number and bit 0 is thedata to put in the addressed
register. If bit 0 of the address is a zero the register will becleared. If
it is a one the register will be set. Any write operation to a SAM
register will do the trick since the actual data written is ignored and
it isthe address used that matters. Table 4.8 gives the SA M register
addresses for programming the display start address and other
functions. Configuring SAM and the VDG (via PIA 1) is given full
treatment for the TRS-80 Color Computer in Color Computer
Graphics, available from Tandy. Although this is written primarily
for programming in BASIC, addresses and dataare givenin hex and
binary. And it is worth getting even if you own a Dragonsincethe
machines are so similar.
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Table 4.8 SAM registers.

Addresses (hex)  Functions
clear set

FFCO FFClI Display mode. Three bit configuration.
FFC2 FFC3 (see technical manual).

FFC4 FFCS

FFC6 FFC7  Display address offset (bit 9)

FFC8 FFC9 bit 10 (write offset in the

FFCA FFCB bit Il form xxxx xxx0 0000 0000
FFCC FFCD bit 12 where xxxx xxx are the
FFCE FFCF bit 13 address bits written

FFDO FFDI bit 14 to SFFD3 (high) down
FFD2 FFD3 bit IS to SFFC6 (low) regs.)
FFD4 FFDS5 Memory ‘Page’. Keep this cleared.
FFD6 FFD7  CPU rate (2-bit).

FFD8 FFD9
FFDA FFDB Memory size (2-bit).
FFDC FFDD

FFDE FFDF Map type. Clear: 32K. Set: 64K.

Block and tackle

When you consider that early mainframes got by quite happily with
only 4K or so of memory, the 32K of the Dragon 32 seems quite a
luxury. But while the mainframes might have been happy with only
4K their programmers were not, and even 32K on a home computer
can be too restrictive for some jobs. Hence the trend to an increasing
amount of immediate access memory and the advent of such beasts
as the Dragon 64. But the popular 8-bit processors, such as the 6502,
the Z80 and the 6809, have an address bus that is only 16 bits wide.
As you must know by now, sixteen bits can address a maximum of
65536 locations - 64K of memory. So how can an 8-bit computer
hold 64K or more of RAM and still have room for ROM operating
systems? The answer, of course, is to put a few switches somewhere
along the address bus which are operated by a memory-mapped
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device, and to write software that will switch to the different hanks
or blocks of memory as and when they are needed. Usually each
block resides physically on a separate plug-in board so that the
system can grow to keep pace with the user’s requirements.

Bank or block switching means that you have to take a bit more
care with your program design and coding. The extra memory may
be there but you cannot haveit all at once. There s the little matter
of writing to a switch to access different parts of a program, various
data storage areasor screen memory. Life can get complicated if you
try and run a program resident in one block while the data it is
supposed to be working on occupies another and not simultaneously
addressable block. This is the memory-switch ‘weatherhouse effect’
and it can be very frustrating.

The weatherhouse effect shouldn’t happen if you structure your
programs and carefully define which blocks need tobeconcurrently
addressed. The top level of your program should be the one to
manage all the memory switching. If the program is clearly divided
into separate modules - completely independent sub-programs -
then it can occupy several blocks of memory. Only the top level
driver program neceds to be always on the bus - the modules can be
switched on only when they are needed. Passengers?

The GIMIX gimmick

Dealing with large blocks of switchable memory is usually a matter
for program design. When the switching cuts the display RAM into
four blocks stacked on the same address space, however, the
problemextendsintothecoding of graphics and other display access
routines.

GIMIX manufacture a 6809 system which offers extended
addressing facilities up to 1 megabyte. Before you dump your
Dragon,though, I'd better warnyouthatthe CPU board alone, with
only 1K of scratchpad RAM, costsabout the same as four sale-price
16K Color Computers. It isn’t a home micro! The system accepts
various memory boards, one of which is a 512X 512 high resolution
video board. The mapping is the normal horizontal line of 8 pixels
(dots) to each byte, so the screen RAM is 64 bytes wide by 512 bytes
high - 32K in all. However, the board occupies only 8K of address
space. It is ‘folded’ into four bands.

Any one of the 262144 display dots isuniquely identified by two 9-
bit co-ordinates. The horizontal (x) co-ordinate presents no
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problems since the 8K band addressed consists of 128 complete
lines. The vertical (v) co-ordinate, on the other hand, has to be split
before it can be converted into an address offset fromthe origin (see
the chapter on high resolution graphics for how this conversion is
done). The highest two bits (8 and 7) are used to select one of the four
possible screen bands by writing them to a switch register. This
leaves a 7-bit co-ordinate for conversion to the address offset and 7
bits is just enough to index any of the 128 addressed lines in the
selected band.

If the valid 9-bit co-ordinate is in register D (D < 512) then the
split is easily achieved by the three single-byte instruction sequence:
ASLB: ROLA : LSRB :leaving the band select code in A and the 7-
bit co-ordinate in B.

And that is how to unfold memory.



Chapter Five
Taking Control

The resident software in your computer should have routines which
deal with the control of thesystem. Occasionally the manufacturer is
kind enough to supply a list of these routines, the jobs they do, the
input they requireand theirstartaddresses. Sometimesyou can only
find this information by disassembling the software and tediously
working out the effect of long lists of uncommented instructions. It
is worth the effort to do this as you may find that the computer is
capable of doing much more than you thought it could.
Persor.ally, when writing machine code programs for home
computers, | don’t like to rely too much on firmware (system
software on ROM) since it rarely does exactly what | want. It may
do only part of the job or it may combine two or more tasks when my
program needs only one of them. Also, routines which are part of a
complete system are not usually as conscientious about conserving
register values as | would like and they often assume that the index
registers or the user stack pointer hold system addresses. The
overheads of saving register values and loading registers with the
necessary addresses before calling these routines can outweigh the
benefits of using them. However, the main reason why I forego use
of the supplied software is that | am then obliged to find out exactly
how the computer hardware is programmed, written to or read
from. Only then do 1 feel that 1 am in control of the machine.
The routines in this chapter program the Dragon’s SAM and
VDG chips, switch PIA C2 lines on or off and read the joysticks.
Dragon BASIC contains code to do these things but possibly not in
the way that you would like, or as quickly. Theyarenot optimised for
either speed or length so, if you need particularlyfastoperationsfor
high-speed games programs, you can have a go at chopping out
superfluous cycles. VIDEOM, for example, changes the text/
graphics mode by picking up a value from a table of mode codes to
write to SAM and the VDG. For absolute speed you could have a
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separate routine to set each graphics mode so as to make use of the
rapid immediate data instructions. More importantly, if you
experiment with hardware control routines you will get to know just
what your computer canand cannot be made to do. Sodon’tjustuse
the routines supplied in ROM or given in this book without
attempting to understand what they are doing.

Paging the video

VIDEOP is aroutineto changethe start address of the area of RAM
used for screen memory. In the Dragon this address canbe anywhere
on a512byte boundary - a 16-bit address with the lowest nine bits all
0. The seven significant bits have to be written to the SAM registers
occupying addresses $SFFD3 down to SFFC6. The arrangement of
these registers is given in Chapter 4.

Input to the routine isin the Bregister. The action of the routine is
to isolate each bit in turn in bit 0 of the A register and use
Accumulator offset addressing to write to even (if the bit is a 0) or
odd (if it is a I) addresses. Since the seven bits are the most
significant bits of a 16-bit address, you might like to rewrite the
routine to accept a full address in, say, the D register but use only the
top seven bits. If you do that the text and graphics routines later in
this book will have to be changed to meet the new standard.

VIDEOP - Video page addressing on the Dragon

Stack - 5.

1/0 B7 to Bl containsthe K boundary number. BOis ignored.

Notes -~ SAM is programmed by a write to an odd address if the bit
is set, or to an even address if the bit is reset. Dragon
memory $0000 to $O3FF is used by the system and so is a
small amount of memory at the top of user RAM. Safe
start values for the highest resolution are $04 to $66.

VIDEOP PSHS X.,D,CC ;save registers used. Index SAM
LDX #SFFD2 .at hi-bit register with X.

;write loop: X is decremented to index each address pair in

sturn with bit 0 of A determining write to even or odd addr.

VPLOOP SEX :nextaddr bit all through A then
ANDA  #%00000001 ;only in bit 0. Write to even
STA AX ;addr if 0, odd addr if 1.
ASLB :next addr bit to bit 7 for SEX.

LEAX -2.X :move X to point to next SAM
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CMPX #SFFC4 ;addr-pair, repeating until
BNE VPLOOP ;7 bits written.
PULS PC.,X.D,CC restore regs, exit VIDEOP.

Changing mode

Changing the text/graphics mode is more complex than changing
the screen start address. Three bits have to be written to SAM at
$FFC5 to SFFCO and five bits have to be written to bits 7to 3 of PIA
I PRB to set the VDG.

VIDEOM gets these eight bits, combined in one byte, from a
table. This table need not follow immediately after VIDEOM since

[afoo [ x]x[x]1]

not used
:sixfeen =
— mode =
— bit :
[— patterns — o|1|1l1|0|1|1
/W e 1 1]
vy
SAM VDG

Fig 5.1. Video mode selection.
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the instruction LEAX VMTAB, PCR will load X with the address
of VMTAB wherever it is. There are sixteen bytes in the table even
though there are only thirteen different modes. The reason for this is
that the high order digit of input B is used to index the table and it is
shorter, quicker and a lot easier to include three repeated values in
the table than to test for an illegal input value.

The lowest bit written to the PIA at PRB-3 is for colour set
selection. In PMODE 4 this will be green on black if the bit is 0 or
buff on black if it is 1. The table values have this bit (stored as bit 0)
always reset and bit 0 from the input B value is merged to complete
the group of five bits before they are written to the PIA. As a
suggestion for improving the routine, you may like to write a
separate module which writes only to PIA I PRB-3 to change the
colour set. Then only PRB-7to 4 should have table value bits written
to them for mode selection.

VIDEOM - Video mode selection on the Dragon

Stack — 6.

/0 Hi-nib B (high order digit of B) holds mode number, $0 to
$F. BO is the colour select bit: 0 = green, I = buff (or the
associated colour groups).

Notes — Modes 0, 1, 2 and 3 are all Alphanumeric/ inverse/semi-
graphic-4 (text) mode. Mode names are given against the
table but see the Dragon and Color Computer books listed
in Further Reading for a complete description of the
different modes.

VIDEOM PSHS X.D.CC isave registers used.
Jfirst, index mode table and use hi-nib B as offset to pick
.up the correct mode byte, merging colour set bit with it.
LEAX VMTAB,PCR ;point X to mode table start.

TFR B.A .get mode number from hi-nib B
LSRA ;downintolo-nib A sothat A
LSRA .gives the offset of required
LSRA :mode byte from table start.
LSRA ;Then mask outallbut colour
ANDB  #9%00000001 ;select bit in B and get mode
ORB AX :merged with colour bit.

:second, highest 3 bits of mode byte written to SAM, moving
;lowest 5 bits up to B7 to 3 ready for PIA write.

LDX #SFFC4 .index SAM mode addresses
VMLOOP ASLB :nextmodebitinto bit 0 of A
ROLA :and mask out other A bitsso

ANDA  #9,00000001 ;X + A addresses even or odd
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STA AX :SAM addr to reset orsetSAM
LEAX -2X :mode bit. Repeat till 3 bits
BNE VMLOOP written to SAM.

;third, write 5 mode bitsto PIA | PRBto program VDG,
;not changing PRB-2100. Bits2to 0 of Bare all 0.

PSHS B ;put mode on stack so bits 7to 3
LDA $FF22 :can be merged with PIA | PRB
ANDA  #9,00000111 :after clearing old mode bits
ORA S+ ;out. Also remove mode from S
STA SFF22 ;write new mode to PRB/ VDG.
PULS PC.X.D.CC restore regs, exit VIDEOM

;table of conjoined 3-bit SAM and 5-bit VDG codes to
:set the Dragon graphics/text modes.

VMTAB FCB 0,0,0.0 .alpha/inverse/semi-graphics-4
FCB 502,540 semi-graphics 6 and 8
FCB $80.8C0 semi-graphics 12 and 24
FCB $30.$32 itrue graphics 1F and IT
FCB  $54.376 :2Fand PMODE 0
FCB $98.SBA :PMODE I and 2
FCB $DC.SDE :PMODE 3 and 4

Control switching

As stated in Chapter 4, all four of the Dragon’s C2 control lines are
configured as output switches. Those connected to P1A Oare used for
sound sourceselection (see Chapter8) orjoystick selection(dealt with
later in this chapter). The two connected to P1A 1are used for sound
enableand cassette motor control.

SWITCH is a routine which writes new values to all CR-3 bits and
so can deal with any C2 switching process with just one subroutine
call. Ittakesadvantage of the fact thatthe Dragon’s PIAs do not exist
only at their primary address locations but are each repeated eight
times, so that PIA Ocan be writtentoatlocations$FF1Cto$FF1Fas
well as the normal $FF00 to $FF03. This makes all four Control
Registers just two bytes apartfromeach other and the write can take
place in a loop using the 2-byte auto-increment indexed addressing
mode.

SWITCH - Write to all four PIA C2 lines on the Dragon

Stack - 5.

1/0 Bits 3 to 0 of input A contain the new values.
Bit0to PIA 0 CRA-3(CA2) MUX SEL lo-bit.
Bit 1 to PIA 0 CRB-3(CB2) MUX SEL hi-bit.
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Bit 2 to PIA 1 CRA-3 (CA2) Cassette motor control.
Bit 3to PIA 1 CRB-3 (CB2) Sound enable.

Notes - Repeataddresses of PIA 0at SFFID and SFFI1F are used.
No other CR bits are affected. AllC2linesareassumed to be

output,
SWITCH PSHS X,D,CC ;save registers used. Use X to
LDX #SFF1D ;pointto PIA 0 CRA.

Jloop,geteach Control Register contents in turn, set CR-3
ithenresetitif Ainputbitis 0. Put back and index next.

SWLOOP LDB X :get current CR contents and
ORB #9%00001000 :always set CR-3 then shift
LSRA scorresponding inputbit out to
BCS SWNEW scarry, skip if set -~ job done
ANDB #%11110111 else reset CR-3 to match input.
SWNEW STB X++ ;restore CR with new CR-3, bump
CMPX #S$FF25 ;pointer tonext CR,repeattill

BNE SWLOOP 14 bits written to 4 CR-3s.
PULS PC,X.D.CC restore regs, exit SWITCH.

Joystick analog to digital read

The Dragon, of course, has a routine to test the current joystick
positions. It is located at $BD52 (on my Dragon) and stores the
joystick values in locations $015A to $015D. Registers U, X, D and
CCare all changed during its execution, so if you do use the resident
routine make sure that you push those registers first if they hold
important values. It isn't a particularly quick routine - each joystick
value (right horizontal, right vertical, left horizontaland left vertical)
may be sampled up to ten times before the Dragonis happy withthe
result.

A lot of games use only one joystick, so it seems rather a waste of
timealways to test both. JOYCAB, withits two subroutine modules
JOY AD and BUTTON, tests only one joystick. Which one, left or
right, depends on the state of the carry flag C on input. It returns
maximally useful information: C is set if the fire button is pressed,
reset otherwise, for rapid BCC or BCS decisions and the six-bit
joystick position valuesarein A7-2 (horizontal,x)and B7-2 (vertical,
v)where left/ right or up/down decisions can be made on the state of
the negative flag N after TSTA or TSTB. Bits 1 and 0 of both
accumulators contain the code for which joystick has beensampled.
Themodules JOYAD and BUTTON mayeachbecalled asroutinesin
their own right to get just joystick or just fire button results.



Taking Control 55

Joystick sampling is an analog to digital conversion (A/ D). The
opposite process, digital toanalog(D/ A),is pursued at greaterlength
in Chapter 8 but for now it is enough to knowthat a six-bit value
written tothe D/ Aconverter (PIA [ PRA-7to2)isoutputasavoltage
which varies in direct proportion to the written digital value. The
joystick horizontal or vertical movement affects the voltage allowed
through a variable resistor and this is compared with the voltage
output from the D/A. Bit 7 of PIA 0 PRA signals the result of the
comparison. If the D/A output exceeds the joystick output then
PRA-7 goes low (0), otherwise it is high (I). A/ D conversionconsists
of a binary successive approximation of the D/A output to the
compared voltage - in this casethe joystick.

JOYCAB - Single joystick and fire-button read on Dragon

Modules JOYAD, BUTTON.

Subroutines - SWITCH.

Stack 5 + subroutine stack use.

1/0 Input C = 0for Right joystick read.

C = I for Left joystick read.

Output C = [l if fire-button pressed, else C = 0.
Bits 7 to 2 of A hold joystick horizontal (x)
position value (9%000000x x is far left).

Bits 7 to 2 of B hold joystick vertical (y)
position value (%000000yy is bottom).
Bits I and 0 of both A and B hold joystick
code: 00 = Right x

01 = Right y
10 = Left x
11=Lefty
Notes - Modules JOYAD and BUTTON may be called as

separate subroutines. The fire-buttons share PIA 0
PRA with the keyboardsoitisinadvisable touse both
simultaneously.

:JOY CAB: top level, converts input to correct form for

:module JOY AD read of x and y and components of requested joystick.

JOYCAB LDB #0 ;propagate carry through all bits
SBCB #0 ;of B and back into C, then also
SEX sthrough all A bits. Ensure bit
ORA #9%,0000000 | ;0 of A set for y-component read.
ANDB #%l1111110 ;B0 reset for x-component read.
BSR JOYAD .getyreadinA, then

EXG AB .into B, A getting x code
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BSR JOYAD ;then x read.
BSR BUTTON .fire-button state into C
RTS ;and exit JOYCAB.

:JOYAD: low level, read joystick R or L,x or y, depending

;on A1,0: 00= Rx, 0l =Ry, 10 = Lx, |1 =Ly. Output in

:bits 7to 2 of A. A1,0 unchanged.

JOYAD PSHS CC save carry flag. Mask out all
ANDA  #9%0000001! except code bits in A for merge
JSR SWITCH,PCR :and selection of correct joystick.
STA S “push” for later merge.

;binary successive approximation starting with $80 and if
;too small adding Y, each time, if too big subtract ;.

LDA #380 ;start value, also put on stack
STA -S «foradd/subtract value in loop.

:loop until 6-bit approximate value found.

VOLALP STA $FF20 ;output value to D/ A and test
TST SFF00 ;comparator input to PRA-7
BMI VOLTAD skip if approx. <joystick
EORA S selsea. > j.so clear last add

VOLTAD LSR ,S ;halve theincrement and add to
ORA .S .approximation. then test if
BITA  #%00000010 .increment gone past 6-bit limit
BEQ VOLALP Jlooping until it does.

;A7 to 2 now contains 6-bit digital approximation to joystick
;position plus bit | set. Clear bit I, removing increment
from stack. Merge joystick code. removing code from stack.

EORA S+ .clear Al and getinc. offstack
ORA S+ .merge code getting stack tidy
PULS PC,CC for return to JOYCAB.

:BUTTON: low level, read right or left joystick fire-button.
dinput C=0for R, C= Ifor L. Output C = I if button
spressed, else C = 0.

BUTTON PSHS A ;save A contents while A used to
LDA SFF00 .get PLAO PRA forbutton bits.
EORA  #%I!IITII1] ;complement so press = 1, nopress
BCC BBTOC :is 0, no change to C so branch
RORA :can be made to shift out Left

BBTOC RORA i(bit I} or just Right (bit 0)

PULS PCA :into C. Return to JOYCAB.



Chapter Six
Versatile Graphics

The graphics commands in most computers arequite sophisticated
but do they really doeverythingthat youneed?Trytelling the Dragon
to:

LINE (0,0)-(255.255), PSET

[f your Dragon is as daft as mine it will draw a line from (0,0) to
(255.191). It won’t even attempt to draw if any of theco-ordinatesare
less than 0 or greaterthan 255 - and thatis not muchgood if you need a
game shape to float on and off the screen.

The graphics suite in this chapter is somewhat rudimentary, doing
only single-point plottingand straight-line drawing (nocircle,box or
fill routines) but it does have features which make it quite versatile.
PLOT works on 16-bit co-ordinates ($8000 to $7FFF, decimal

CX X YeXeXeX Yo) Vides
RAM

¥[o 0001 00 0

00000000

Afo 0001 00 0]

~Nlm
o|l<
~

o~

L"O!\l

[C0001 00 0}—

Fig. 6.1. Dot inversion and test in PLOT.
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—32768 to +32767) so line figures can be drawn partly on or off the
screen. Input to it, however, is by 8-bit vecrors (offsets to the x,y
coordinates of the last point plotted). This is quicker and more
versatile since astringof vectorscanbeusedtodrawthesameshapeat
different placesonthescreen byadjustingthestartco-ordinates. Each
xor yoffsetin the vector is in the range $80 to $7F (decimal—128to
+127) and this is quite adequate for most purposes.

The origin is at the bottom left of thedisplayarea,notthe topleftas
in Dragon BASIC. The display area can be set to any size within the
limits imposed by the screen size so a ‘graphics window’ can be set up
on only part of the screen and the rest of the screen preserved for text.

A note on style

The graphics suite comprises several independent routines and the
largest of these are split into modules. Three different forms of
subroutine call are used to distinguish between the different
structural relationships: (1) BSR label is used for routine-internal
calls, that is from the top level to an integral but separately written
part, (2) LBSR label is used for a call toaseparate routine within the
suite,and (3) JSR label, PCR is used when a routine not in thesuiteis
called. Using these different forms can help to improve the readability
of programs. However, problems crop up if a routine is large and the
BSR form cannot be used for internal calls.

A high resolution graphics suite

PLOT - Modal, vectored plot

Modules - PADDR, PLOTAP.

Subroutines - VECADD, MBYBY.

Stack 11+ subroutines.

110 Vector (x,y offsets from last point) input in A B.

Essential parameters and variables in table PLTVAR.
Modedetermined by valueat PLTVAR+15:
0=TEST, = INVERT,2=PLOT, 3= UNPLOT.
Output C = 0if point outside display area.

C=1: Z= 1: point reset (off).

C=1: Z=0: point set (on).
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Notes Written for variable sized display (maximum height
of 65536 dots). Dot width must be a multiple of 8
(maximum 2040).

:PLOT: top level, decides if point is to be plotted.

PLOT [.BSR VECADD sform new coordinates from vec
BCC PLTEND .+ last point. Only if in area,
BSR PADDR convert coords to address and
BSR PLLOTAP :plot using address info. Then
ORCC  #900000001 show plot has taken place.

PLTEND RTS .exit PLOT routine.

:PADDR: convert co-ordinates to absolute address and place bit.

.positive ycoord is lower in memory than origin.

PADDR PSHS U,Y,D,CC :save regs used. Index PLOT
LEAU PLTVAR,PCR ;variables from base U.

sconvert y-coord to row [LH byte address offset from origin.

LLDY 18.U ;pick up y-coord and line-inc
L.DB 14.U i(addr diff between col. bytes)
JSR MBYBY.,PCR  :multiply them to getaddr offset,
STY 20,U 16-bit, put in “address’ variable.

;convert x-coord to byte offset along row.
[.DD 16.U .pick up x-coord and divide by
LSRA seight to give offset along row
RORB ;of byte location containing
LLSRA required dot.
RORB .(dot position in this byte
[.SRA :will be got from remainder
RORB ;of x-coord / 8).

;byte address is: origin — y-offset + x-offset.
ADDD 8.U .x-offset + origin address
SUBD 20,U ;— y-offset gives byte addr
STD 20.U ito ‘address’ variable.

.get set-bit byte giving dot-place in addressed byte.
I.LDB 17.U .get x-coord lo-byte lowest
ANDB  #9,00000111 ;3 bits as rem. x-coord |/ 8
LLDA B.U .indexing set-bit table to
STA 22.U .get set-bit to ‘set-bit’ var.

PULS PC.U.Y.D.CC restore returnto PLOT.

:PLLOTAP: modal plot at addressed point. Exits with Z set
;if dot left clear, Z reset if dot is set.

PLOTAP PSHS U.D save regs used. Index PLOT
[LEAU PLTVAR.PCR variables from base U.
LDB [20.U] ipick up display byte.
LLDA 15.U ;get mode (0 to 3) and shift

L.SRA ;out for branches on C and Z.
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:TEST (0)is EQ,CC. INVERT (l)is EQ.CS.
;PLOT (2)is NE.CC. UNPLOT (3)is NE.CS.

BEQ PLAPIT ;skip if Invert or Test, else
ORB 22,U ;use set-bit to set dot-bit.
PLAPIT BCC PLAPPB ;skipif Test or Plot, else
EORB 22.,U ;use set-bit to invert dot-bit.
PLAPPB STB [20,U] ;put byte back to display.
ANDB 22.U ;use set-bit totest dot-bit.
PULS PC.U,D ;restore, returnto PLOT.

;PLTVAR: 23 bytes variables used by PLOT, VECADD, STMODE,

;STCRDS and GDRST. Display parameters hereare initialised

for Dragon graphics pages S. 6. 7 and &, as ¥, of full

iscreen area in the centre.

PLTVAR FCB $80.$40,520.510 :one set bit in each possible
FCB $08,504,502,01 :placeina byte.

FDB $32E4 sorigin. Bottom left of area.
FDB $00C0 idisplay area x-dots (bytes * 8).
FDB $0090 idisplay area y-dots (rows, lines).
FCB $20 Jline-inc (vertical byte diff).

FCB 0 :mode. Initialised to TEST.
FDB 0 :x-coord. (at origin).

FDB 0 .y-coord. (at origin).

RMB 3 ;‘address’ and ‘set-bit’ vars.

VECADD - Add vector to co-ordinates and test against limits
Stack -~ 6.
110 Vector (x,v offsets) input in A B.
Output C = 1if new coordinates in display area,
else C = 0 if out of limits.
Notes - Lower limitis always 0.

VECADD PSHS UY. X isave regs used. Index PLOT
LEAU PLTVAR.PCR :variables from base U.
LDX 16,U ;pick up xand y coordinates
LDY 18.U .inindex registers X and Y
LEAX AX ;touse signed addition
LEAY B.Y \instructions to add 8-bit vector
STX 16,U ;offsets to 1 6-bit coords. Then
STY 18.U replace new coords.

sclear carry if either x or y coord is too big for display

;area. Also if too small as unsigned compare treats

;negative values as high positive values.
CMPX 10U stest x-coord against x-dots,
BHS VCAEND ;skip, C=0, if outside limit.
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CMPY 12,U selse test y-coord with y-dots.
VCAEND PULS PC,UY.X ;exit C=1 if both coords okay.
LINE - Modal, vectored straight line
Modules LINIT, LINEDO.
Subroutines - PLOT.
Stack 9 + subroutine.
1/0 Vector input in A B determines end-point of line
drawn from last coordinate position.
Notes LINIT builds up an 8-byte table of variables to be

used by LINEDO. For each point along the line,
PLOT is called with avectorin A,B, theoffsets being

+1,—1,0r0.
;LINE: top level. Just calls modules.
LINE BSR LINIT ;set up line vectors, counts, etc.
BSR LINEDO ;use LINVAR values todrawline.
RTS ;exit LINE routine.

;LINIT: compute LINE variables - absolute values of input
.offsets, sorted into Greater and Lesser: vectors for sending

:to PLOT: (a) Step-vec: both coordinates changed, (b) Normal-
.vec: just greater offset coordinate changed; dot-count:
;number of dots to plot; step-count: when to send step-vec.

LINIT PSHS U,D.CC ;save regs used. Index LINE
LEAU LINVAR.PCR :variables frombase U.

;store offsets. Initialise step/norm-vecs to +1.
STD U istore A,B offsets in offset
LDD  #S0101 ;vars. Put+1inboth xand y
STD 2,U ;offsets in step-vec and
STD 4,U :norm-vec initially.

.get absolute A offset, correcting vecs to —1 if necessary.
TST U .ifend of line x-offset (A input)
BPL LITSTY sis positive then skip, else
NEG U :make it positive and
NEG 2,U scorrect step-vec and norm-vec
NEG 4.U sto—Iforleft-going line.

:do same for B offset.

LITSTY TST 1.U .ifend of line y-offset (B input)
BPL LIGXY iis positive then skip, else
NEG 1,U ;getabsolutevalueand
NEG 3.uU scorrect step-vec and norm-vec
NEG 5.U ito—1for down-going line.

;greateste-o-loffset in ,U. Clearlesser offset norm-vec.
LIGXY LLDD U ipick up x,y e-o-l of fsets in A,B
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CMPA U stest fory > x
BLO LIXLTY :skip to exchange if it is, else
CLR 5.U ;norm-vec y-offset is 0 for
BRA LIGLO ;long horizontals.
LIXLTY CLR 4.U ;y > x soclear norm-vec x-of f set
EXG A.B Jfor long verticals. Get greatest
LIGLO STD U .e-o-l offsetin ,U. lesser in 1,U.
;dot-count s greater offset. Step count is<< half of it.
STA 6,U ;dot-countis greater of fset.
DECA istep-count starts at greatest
LSRA .integer < half greater offset.
STA 7.U 4
PULS PC.U,D.CC .restore, return to LINE.

:LINEDO: draw straight line using LINVAR variables.
;action: for dot-count, subtract lesser offset from step-
;count and if result positive then change greater offset
;coord else add greater offset to step-count and change
:both coords.

LINEDO PSHS UD.CC ;saveregs used. Index LINE
LEAU LINVAR,PCR ;variables from base U.
TST 6,U :no line to draw if dot-count
BEQ LDEND :is 0 so end immediately, else

itest whether step necessary (both coords inc’d / dec’d)

LDDTLP LDA 7,U .get step-countand subtract
SUBA I,U ‘lesser of fset, step needed if
BCS LDSTEP result gone below zero.

;positive: no step, change only greater offset coord.
STA 7.U ire-store step-count and pick up
LDD 4,U :norm-vec in A,B ready for
BRA LDPLOT .vectored plot.

:below zero: step, add greater offset to count, change both

LDSTEP ADDA .U :coords. Add offset to make it
STA 7.U ‘positive again before storing
LDD 2.U .pick up step-vec in A B for ...

LDPLOT LBSR PLOT ;call to plot at vector A B.
DEC 6,U repeat for dot-count, leaving
BNE LDDTLP icoords at line end point.

LDEND PULS PC,U,D,CC restore, returnto LINE.
:LINVAR: variables used by LINEDOand built up by LINIT
RMB 8 ;see LINIT and LINEDO.

STMODE - Set plot mode
Stack - 2.
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1/0 Input B is mode (0 to 3).
Notes — Not worth indexing PLTVAR with U.

STMODE PSHS B,CC .preserve regs.
ANDB #9%0000001 1 ;mask out unused bits and store
STB PLTVAR+15,PCR :at mode variable in PLTVAR.
PULS PCB.CC restore regs, end.

STCRDS - Set coordinates

Stack - 1.

110 Input X,Y hold new x,y coordinates (16-bit).

STCRDS PSHS CC :STore instr. affects flags.
STX PLTVAR+16,PCR ;write new co-ordinates to
STY PLTVAR+18,PCR coord variables in PLTVAR.
PULS PC,CC ;restore regs, end.

GDRST - Reset graphics display area
Modules - CRDRST, GDCLR.

Stack 15.
110 No input needed, uses PLTVAR.
Notes Clearing a full screen is just clearing each byte from one

address to another. Clearing a window means clearing
just one row (line) at a time inside a loop and this is
slower. The modules, CRDRST and GDCLR mayeach
be called separately.

:GDRST: top level. makes ‘clear display area’ and ‘reset
;coords to origin’ into just one subroutine call.

GDRST BSR  CRDRST ireset coordinates to (0,0).
BSR  GDCLR :clear display area.
RTS .exit GDRST routine.

:CRDRST: reset coords to origin by clearing.

CRDRST PSHS U.CC ;save regs. Index coordinate
LEAU PLTVAR+16,PCR :variables in PLTVAR by U.
CLR U+ :clear x-coord hi-byte, index
CLR .U+ :lo-byte, clear it and index
CLR U+ .y-coord hi-byte, clear, index
CLR U lo-byte and clear it.
PULS PC.U.CC rrestore, return to GDRST.

:GDCLR: reset all bits inside display window. Nested loops,

;inner loop clears one display line, outer loop sets start

;address to each line in turn.

GDCLR PSHS U,Y.X,D,CC ;save regs used. Index PLOT
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LEAU PLTVAR,PCR ;variables from base U.
.get bytes per row in X and no. of rows (lines) in Y.
LDD 10U ;get x-dots and divide by 8
LSRA :to give number of bytes of
RORB .display locations in each
LSRA ;line of the window.
RORB ;x-dots must be a multiple
LSRA ;of 8 or window not fully
RORB scleared.
TFR D.X ;X = bytes per row.
LDY 12,U ;Y = y-dots = no. of rows.
.get offset to move pointer up to next row, start at origin.
LDD #0 ;get negative line-inc to move
SUBB 14U ;up screen = down in memory.
SBCA #0 Jline-inc stored as | byte.
LDU 8.U ;U now origin address as pointer.
;Jloops: clear rows from bottom to top of window.
GCRLP PSHS U, X ;save LH address and byte count.
GCBLP CLR U+ iclear row byte, pointing to next
LEAX -1,X .and repeat till all bytes in
BNE GCBLP scurrent row cleared.
PULS UX restore row LH address and byte
LEAU DU ;count. Move point up to nextrow
LEAY -1.Y ;and repeat till all rows in
BNE GCRLP ;window processed.

PULS PC,U.Y.X,D.,CC srestore. ret to GDRST.

GSTRNG -Process a program embedded string of graphics

commands

Subroutines - STMODE, VECADD, PLOT, LINE.

Srack 8 + subroutines.

110 - Stacked return address (to calling program) is used
as pointer to the string of graphics commands which
must immediately followthe BSR GSTRNGorJSR
GSTRNG.

Commands:
0 string terminator, exit GSTRNG
1 STMODE - I-byte PLOT mode follows
2 VECADD - 2-bytes, x,y vector, follows
3 PLOT - 2-bytes, x,y vector, follows
4+LINE - 2-bytes, x,y vector follows
Program return is to byte following terminator.

Notes Graphics strings may be stored in an area separate

from the program but each must have a preceding
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JSR GSTRNG and have RTS after the null (0)
terminator. The program then calls the string, not

GSTRNG.
GSTRNG PSHS X,D.CC ;save regs used. Getreturn address
LDX 5.8 sfrom stack as string pointer
LDA X+ .get Ist code, point to next byte,
BEQ GSEND sexit if terminator, null string.
:command loop; Isttest for mode needing only | byte.
GSCLP DECA .zero if command is STMODE
BNE GSNMOD :s0 test further if not,
LDB X+ :get MODE and move point then
LBSR STMODE ;go set new mode and
BRA GSNXT ;g0 get next command.

;other commands have 2 bytes following which need to be
;passed on in A,B so the command code is put on stack.

GSNMOD  PSHS A ;put code on stack and pick up
LDD X++ vector in A.B moving pointer
DEC .S .past them. Test for VECADD
BNE GSNVEC .and skip if not, else
LBSR VECADD :go add vector to coords, then
BRA GSCSNC .goclear stack, get next code.
GSNVEC DEC .S stest for PLOT or LINE
BNE GSNPLT :skip if code was 4 or more
LBSR PLOT ;go plot at vector then go clear
BRA GSCSNC ;stack and get next command.
GSNPLT LBSR LINE .draw line, etc.
clear command byte off stack when VECADD. PLOT or LINE
GSCSNC PULS A .crash prevention!
GSNXTC LDA X+ :nextcommand, move pointer, and
BNE GSCLP repeat if not null (0) terminator.
GSEND STX 5.S ;stack pointer for return to

PULS PC.X.D.CC :byte after terminator.

An example for the Dragon

GXMPLP is a short program showing how the graphics suite can be
used. The first part of the program initialises SAM and the VDG,
clears the display area (the window described in PL.TVAR) andsets
the plot mode to I (INVERT). Inverting dots has the useful property
that if you go over the same points twice they are first set and then
cleared. Put a delay between the setting and clearing and you have a
‘frame’, say about !, of a second. The next ‘frame’ can be plotted ata
slightly ditferent place - and hey presto! moving pictures!
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GXMPLP and the routines called by it are all relocatable.
Assemble them anywhere and use BASIC EXEC to call GXMPLP.
The text screen reappears on return to BASIC.

;GXMPLP: graphics suite demonstration program for Dragon.
:stack - 11 + subs.

GXMPLP PSHS Y., X,D,CC ;save regs used by program.
.initialise SAM and VDG (via PIA) by chapter 5 routines.

LDB #SIE .use graphics-pages

JSR VIDEOP,PCR :5,6,7 and 8.

LDB H#SF1 ;set SAM and VDG for

JSR VIDEOM,PCR ;PMODE 4, buff.
;set mode to Invert, clear window, init. coords & loop count.
LDB #I :mode I is INVERT dots.
JSR STMODE,PCR
JSR GDRST,PCR ;clear window.

LDX H#SFFFF :;set frame start-coords
LDY #SFFFF ito (=1, —1).
LDD #30040 frame loop count.
:frame loop: set coords, draw shape, delay, draw shape.
GXFLP JSR STCRDS ;set shape start coords
BSR GXMPLS ;and draw string to set dots.
.delay for about ¥, second.
PSHS X ;save X (x-coord) for use as
LDX #$3000 :delay loop counter.
GXDLP LEAX -1.X ;do nothing but use up
BNE GXDLP time for about Y, second
PULS X :then get x-coord back and
BSR GXMPLS draw string in same place to
LEAX 4X iclear dots. Move shape start
LEAY 3 ;coords for next frame
SUBD #lI ;and repeat for 64 frames.

BNE GXFLP 4
PULS PC,Y.X,D.CC return to BASIC.
:GXMPLS: graphics command string. Last command before
;terminator is vector to set coords back to start point.
GXMPLS  JSR GSTRNG.PCR :go process following string.
FCB $04.$1D,$00,%04,500,$E3,504,$E3,500
FCB $04.,500,51D,$03,506,$EC,$03,500,3FF
FCB $04,304,3FC,504.$08,$00,500,504,504,504
FCB $03.800,801,802,5F8,$0A,504,SFC SF7
FCB $04,508,$00,504,$F C.509,$02,5F 5,502
FCB $04,508,800,304,SFE,$SFC,$04,3FA 304
FCB $02,$0E.500,504,508,500,504,SFA SFC
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FCB $04 $FE,$04,$03,504,SFE.$03,$F 3,800
FCB $02.$F8,$0A.$00 ;null (0) terminator.
RTS sreturn to GXMPLP.

Optimising for the Dragon

The graphics suite doesn’t operate as fast as it could. Indeed, the
routines are quite a lot slower than those used in Dragon BASIC for
several reasons. Here are the three most important, along with
suggestions for increasing speed.

(1) The routines in the suite are written for structure, clarity and
multi-system use, which you will have to sacrifice for optimum
speed. Does PLOT need to have a top level and two lower levels as
well as a subroutine call to VECADD? Write it as one long sequence
and you will cut out the subroutine call instructions and the repeated
register saving and U initialising - big cycle eaters all.

(2) Sixteen-bit coordinates are better than 8-bit -~ a line from the
origin to (255,255) gets there, not to (255,191) - but they do slow
things down. All is not lost, however. As plottable display co-
ordinates must be intherange 0to 255 ($FF) you can disregard the
high order bytes of both coordinates when computing the address.
The ‘line-inc’ doesn’t change and so it can be written as immediate
data in the routine instead of being picked up from PLTVAR. Try
substituting the following sequence for instructions 3 to 13 in
PADDR and see the speed difference.

LDB 19.U  :get y-coord lo-byte (hi-byte
LDA #32 :must be $00 if valid) * line-
MUL sinc to give vertical offset
STD 20,U  :from origin to “address™.
LDD 16,U  ;get x-coord. Hi-byte = 0 so

LSRB ;Just divide lo-byte by 8 for
LSRB ;valid byte offset along row
LSRB :in D.

(3) If you are happy with a top-left origin you can take advantage of
thefactthat multiplying the y coordinate by 32 (line-inc)can be done
at the same time as dividing the x coordinate by 8 since y * 32 =y *
256 / 8. Lines 3 to 16 of PADDR can be replaced by the following
code. Don’t forget to change the origin address in PLTVAR and
also change GDCLR so that D holds a positive line-inc value.
GXMPLS will, of course, be upside down.
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LDA 19.U D gets y-coord * 256 +
LDB 17,U  ;x-coord then is divided

LSRA ;by 8 to give both vertical
RORB :and horizontal address
LSRA :of fsets from the origin
RORB ;at the same time in one
LSRA .16-bit value. Ready for
RORB adding origin address.

There are one or two other tricks that can be used to speed up
PL.OT and the other routines in the suite. If you discoverthem all
you will find that 16-bit co-ordinates can be very nearly as fast as 8-
bit on the Dragon - and much more versatile. Good hunting!



Chapter Seven

High Resolution Text

Owners of the Dragon or TRS-80 Color Computer should find this
chapter very useful. The character set used in both these computers
suffers from three gross disabilities: (1) it lacks lower-case letters and
many standard symbols, (2) it is not ASCII coded, and (3) it cannot
be used in the high resolution graphics modes. Not much can be
done through BASIC about these problems but they can be entirely
overcome in machine code. In fact we completely disregard the
character set buried inside the VDG and instead use an area of
memory to store character shaped bit patterns as a wuser-definable
character set. Machine code is so fast and powerful that even having
to write eight bytes to the screen for each character is quick enough
to fill the Dragon’s high resolution screen with 768 characters (24
lines of 32) in the blink of an eye.

The print routine

Like the plot routine of the last chapter, TPRINT can be set to four
different modes of operation. The first (mode 0) is the normal print
mode where the eight bytes containing the character bit patterns are
simply written to eight vertically adjacent screen locations. In this
mode the character sent to the print routine (source character)
replaces that already on the screen (destination character). In the
other three modes logical operations are used to produce various
combinations of the source and destination characters. These modes
are intended primarily for use with pre-defined graphics shapes
rather than alphanumeric characters.

Mode 1 uses the logical AND to set (light up) each dot only if
corresponding source and destination dots are both set. In mode 2
(EOR) any set bits in the source character patterns produce a change
from set to reset, or reset to set, in the destination but source bits
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ubnc
HIGH RESOLUTION SCREEN 1
character —
1 2 3 % 5
line
0
1
2
’ /'{
&4
S
e
8 b‘i‘
|

Fig. 7.1. Writing a UDC character to screen line 3, char. 4.
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Fig 7.2. UDC ‘control code’ graphics
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Tuble7.1. Character bit-pattern hex codes.
ASCH Character hytes (hex)
Hex Dec Top 2 3 4 5 6 7 8
00 0 00 00 00 00 00 00 00 00
01 1 00 00 00 00 FO FO FO FO
02 2 00 00 00 00 OF OF OF OF
03 3 00 00 00 00 FF FF FF FF
04 4 OF OF OF oF 00 00 00 00
05 5 OF OF OF oF FO FO FO FO
06 6 OF OF OF OF oF OF OF OF
07 7 OF OF OF OF FF FF FF FF
08 8 00 00 00 00 00 00 00 00
09 9 Co Co Co co Co co Co Cco
0A 10 30 30 30 30 30 30 30 30
0B B FO FO FO FO FO FO FO FO
oC 12 ocC o0oC o0C oC ocC o0oC oC ocC
oD 13 ccC C¢C ¢cCc ¢cCc cc cc cc cc
OE 14 3C 3C 3C 3C 3C 3C 3C 3C
OF 15 FC FC FC FC FC FC FC FC
10 16 00 00 00 00 00 00 00 00
1 17 00 00 00 00 00 00 FF FF
12 18 00 00 00 00 FF  FF 00 00
13 19 00 00 00 00 FF FF FF FF
14 20 00 00 FF FF 00 00 00 00
15 21 00 00 FF FF 00 00 FF FF
16 22 00 00 FF FF FF FF 00 00
17 23 00 00 FF FF FF FF FF FF
18 24 00 10 20 7E 20 10 00 00
19 25 00 08 04 7E 04 08 00 00
1A 26 00 10 38 54 10 10 10 00
IB 27 00 10 10 10 54 38 10 00
1C 28 44 EE FE FE 7C 38 10 00
1D 29 10 38 7C FE 7C 38 10 00
1E 30 10 38 54 FE 54 10 10 00
IF 31 10 38 7C FE FE 54 10 00
20 32 00 00 00 00 00 00 00 00
21 33 10 10 10 10 10 00 10 00
22 34 24 24 24 00 00 00 00 00
23 35 24 24 7E 24 7E 24 24 00
24 36 10 3C 50 38 14 78 10 00
25 37 60 64 08 10 20 4C 0C 00
26 ki 10 28 28 10 2A 44 3A 00



72 6809 Machine Code Programming
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which are reset leave the destination unchanged. One important use
of mode 2 is where the screen can be initially cleared to either white
(green or buff in the Dragon) or black since the foreground
character will always print as the reverse of the screen colour. Mode
3 is OR which overlays the source character on the destination.

TPRINT gets its source character dot patterns from a 1024-byte
table, UDC (User Definable Characters), stored in RAM. Table 7.1
gives codes to produce the complete ASCII character set with
various graphics shapes for the ASCII control codes $00 to $1F.
You will probably find it easier to type large tables of numbers into
thecomputer as hex digits,through a machine code monitor,rather
than as FCB directives in an assembly language program.

ASCII uses only 7-bit codes with the highest bit of each byte reset
(0), so bit 7 is used by TPRINT as an ‘inverse character’ flag. If the
input character code byte has bit 7 set then the eight bytes picked up
from UDC are complemented to changeall Is to Osand allOsto Is
before being written to screen memory. Ordinary characters have
codes $00 to $7F and inverse characters have codes $80 to SFF.

You don’t have to use the character patterns of Table 7.1, of
course, since any shape which fitsan 8 by 8 dot matrix can be written
in UDC. You could even set up more than one UDC table in
memory and switchthe UDC addressstoredin TXTVAR (variables
used by the text suite) between ASCIll and pre-defined graphics. The
text suite can be used as an easy way of moving small games shapes
around on the screen.

TPRINT ~ Modal, high resolution display print

Modules — TCHARY, TDISPX, TWRITE.
Subroutines - TVALID, TRIGHT.

Stack - 4 + subroutines.

1/0 - Input B is character code.

Bit 7 of B is character inverse flag (1 = inverse).
Character dot patterns in RAM table UDC.
Essential parameters and variables in table TXTVAR.
Mode determined by value at TXTVAR+12:
0= REPLACE. | = AND, 2 = EOR, 3 = OR.
Output: character modally printed and cursor
(TXTVAR+8.,9) moved to next valid print position.
Notes Written for a variable sized high resolution display.
Each character is an 8 X 8 dot matrix (one byte wide
by 8 bytes deep) on the screen. Margins (undisplayed
locations at the end of each screen row) are not
allowed for.
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JTPRINT: top level. savesregisters used in modules,

.initialises U to index TXTVAR.

TPRINT PSHS U.,Y.X.D.CC :save regs used. Index text
LEAU TXTVAR.PCR variablesfrombase U.

LBSR TVALID ;€nsure cursor is on screen.
BSR  TCHARY index UDC char patternsin Y.
BSR TDISPX ;X indexes screen locations.
BSR  TWRITE :move UDC charto screen and
LBSR TRIGHT \move cursor to next position.

PULS PC.U.Y.X.D.CC :exit TPRINT routine.

:TCHARY .Y points to first byte of 8 bytes in UDC giving
.dot patterns {or characterin B.

TCHARY TFR D.Y ;save Din Y. Stripinverse flag
ANDB #%O01111111 [fromcharcode. Code * 8 for
LDA #8 :set of 8 bytes corresponding to
MUL :char code in UDC. Add UDC base
ADDD 10U .address to give char bytes
EXG D.Y ;address in Y, restoring D.
RTS sreturn to TPRINT.

. TDISPX: X pointsto the top of 8 screen locations which
;correspond to the character position indexed by the cursor.

TDISPX TFR D.X save D in X. Pick up no. of chars
LDD 7.U :perlinein A, line offset in B.
MUL ;Address offset of top byte of
ASLB :leftmost char on cursor line is
ROLA :computed from
ASLB scursor line offset *

ROLA no. of chars per line *

ASLB ;8 hi-res rows per character.
ROLA :Then add cursor char offset
ADDB 9.U ;toindex top byte of 8 vertical
ADCA #0 ;locations char position. Add
ADDD .U ,screenstart to give actual
EXG D.X .address into X, restoring D.
RTS rreturn to TPRINT.

:TWRITE: move 8 sequential bytes from UDC to 8 vertically
:sequential screen locations. Invert char bits if bit 7.B

.is set. Combine source (UDC) and destination (screen) bytes
slogically according to print-mode (TXTVAR+12).

TWRITE SEX :normal (A=$00), inverse (A=S$FF).
LDB #8 ;pattern bytes count. Count and
PSHS D ;norm/ inverse used with S index.

LDB 77U ;getscreen row increment
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‘write loop. Ist job: get UDC byte and perform inverting

operation if bit 7,B was set (,S now = $FF).

TWLOOP LDA Y+ :get UDC byte and index next.
EORA S sinvertonly if ,S=$FF.

:next job: test mode forlogical combinations. After shift:

:REPLACE (0)is EQ,CC. AND (1)is EQ,CS.

;EOR (2) is NE,CC. OR (3) is NE.CS.

LSR 12,U ;combination test on mode.
BEQ TWRA .80 REPLLACE or AND
BCC TWEOR ;g0 EOR
ORA X ;combine all setbits in UDC and
BRA TWMEND ;screen bytes.
TWEOR EORA X :complement screen bits if UDC
BRA TWMEND ;bitsareset, else leave.
TWRA BCC TWMEND .o replace, else result bit set
ANDA X ;only if UDC and screen bits set.
TWMEND ROL 12,U :restore mode.

:nextjob: put result byte to screen and move screen pointer
:down to next hi-res row.

STA X .replacement/combination to screen
ABX :add row-inc to move to next row
DEC IS :and repeat until 8 bytes moved
BNE TWLOOP sfrom UDC, processed, written.
PULS PC.D rreturn to TPRINT.

:TXTVAR: 14 bytes variables used by most routines in the
itext suite. Display parameters here are initialised for
Dragon graphics pages 5, 6, 7 and 8.

TXTVAR FDB $1E00 ;screen start address.
FDB  $1F00 :2nd char line address.
FDB  $3600 iscreen end + | address.
FCB §I8 :char lines (dot rows / 8)
FCB $20 :line width (bytes per row)
FCB $00 scursor line offset (0 to 23)
FCB %00 scursor char offset (0 to 31)
FDB 77 :address of UDC (you decide where)
FCB $00 .print mode (at REPLACE)
FCB  $00 :clear mode: 0= black, | = white.

Cursor control

TPRINT calculates the screen addresses from the cursor line and
character (along the line) offsets stored in TXTVAR + 8 and +9.
PRINT AT is easy to write into a program:
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LDA #line ;required line offset.
LDB #char required character offset.
STD TXTVAR+8,PCR set cursor for PRINT AT.

But in many cases a more useful method of adjusting the cursor
position is to use control codes much like those used by ASCIL.
Eight codes, $00 to $07, or their ‘inverse’ equivalents, $80 to $87, are
used by TCNTRL to select various actions.

$04 to $07 are used for single character or line shifts, TRIGHT,
TLEFT, TDOWNand TUP. TDOWN is the sameas ‘line-feed’on a
printer. Left movement is not allowed past the first character on any
line and up movement can only go as far as the top line. Movement
right or down can cause the screen to be scrolled. All four of these
simple cursor movement routines exit through TVALID to ensure
that the position is on the screen.

Null ($00) is used by TCNTRL as a free value to which all
printable characters (above $07) are reduced for the jump rable.
Another use for the null character is as a string terminator. This is
shown later in the chapter.

Codes $03, $02 and $0I form a hierarchy of operations
TCARET (‘carriage return’, cursor to start of the line), THOME
(cursor to start of the top line) and TCLEAR (‘form-feed’, cursor
home and screen cleared). These three routines are combined in an
optimised form as a single routine with three entry points. All of
these control routines can be called directly by your program but
accessing them by merely sending a control character through
TCNTRL is by far the easier method.

TCNTRL - Control operation select routine

Subroutines -~ TPRINT, TCLEAR, THOME, TCARET, TRIGHT,
TLEFT, TDOWN, TUP.

Stack 6 + subroutines.

110 Code input in B is either a character to print, a null
(return immediately) or a control code (see
TCIMPT for control codes).

Notes The jump table can be extended to accommodate
any more control routines used.

JTCNTRL: Ist part strips inverse bit from code, deals with
:null byte and reduces all non-controls to $00 for TPRINT.

TCNTRL PSHS X,B.CC save regs used.
ANDB  #%O1111111 istrip to normal char codes.
BEQ TCEND .exit immediately on null.

CMPB #7 :test for control codes,
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BLS
CLRB

;2nd part: X becomes jump table + 3 *

TCINDX

scorrect long-branch instruction.

TCINDX LEAX
LEAX
ASLB
LEAX
LDB
JSR

TCEND PULS

;TCIMPT: jump table for TCNTRL.

TCJMPT LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA

TCLEAR, THOME,
home cursor or carriage return

TCIJMPT,PCR

B.X

B.X
.S
X

PC.,X,B.CC

TPRINT
TCLEAR
THOME
TCARET
TRIGHT
TLEFT
TDOWN
TUpP

:skipping if B is a control,
.else index TPRINT branch.
control code to address

X becomes jump table base
;address then add 3 * control
;code in B so X is address of
:branch instr. to control routine.
recover input character and
:call routine via jump table.
;end TCNTRL.

:non-control codes.
code |
:code 2
:code 3
;code 4
;code 5
:code 6
:code 7

TCARET - Clear screen and home cursor,

Stack - TCLEAR: 6. THOME, TCARET: 0.

110 No direct input needed. TXTVAR used and affected.
TXTVAR + 13 is “clear mode™: 0 = black, 1 = white.

Notes - The full width of screen is cleared.

;TCLEAR: falls throughto THOME.

TCLEAR PSHS
LEAX
LDU
LDD
TST
BEQ
LDD

U,X,D

TXTVAR,PCR

4.X
#0

13.X
TCLOOP
#SFFFF

;save regs used. Index text
.variables from base X.

istart to clear from screen end.
;0 to reset all screen bits
.unless clear mode not zero
[forblack screen, if not then
;allbitsset for white.

:clear loop pushes all reset or all set bits toscreen RAM.

TCLOOP PSHU
CMPU
BNE
PULS

:THOME: falls through to TCARET.

THOME CLR

D

X
TCLOOP
U.X.D

iset/reset 16 bits moving pointer
.down 2 bytes until at screen
:start address when all cleared.
restore regs and now homecursor.

TXTVAR+8,PCR :cursoroffset totop line and,
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;TCARET: alsoend of THOME and TCLEAR.
TCARET CLR TXTVAR+9,PCR cursor offset to line start.
RTS .exit TCLEAR, THOME, TCARET.

TRIGHT, TLEFT, TDOWN, TUP - Single character cursor moves
Subroutines - TVALID.

Stack — 0+ TVALID stack use.
1/0 - No direct input. TXTVAR used and affected.
Notes — TDOWN may cause scrolling. TRIGHT may cause

carriage-return, line-feed and scrolling.

;TRIGHT: move cursor one character space right.
TRIGHT INC TXTVAR+9,PCR ;move cursor char offset

BNE TRVAL :okay unless ‘wraparound’ to
DEC TXTVAR+9,PCR 0, if so put it back

TRVAL LBRA TVALID .ensure valid screen position.

JTLEFT: move cursor one character space left.
TLEFT TST TXTVAR+9,PCR if cursor char offset is not

BEQ TLVAL .already at leftmost position
DEC TXTVAR+9,PCR ;move it back one space

TLVAL LBRA TVALID ;ensure valid screen position.

;:TDOWN: line-feed, cursor down to next line.
TDOWN INC TXTVAR+9,PCR ;move cursor line offset

BNE TDVAL ;okay unless ‘wraparound’ to
DEC TXTVAR+9,PCR ;0, if so move it back
TDVAL LBRA TVALID ;ensure valid screen position.
:TUP: cursor up one line.
TUP TST TXTVAR+8,PCR ;if cursor line offset is not
BEQ TUVAL ;already on top line then
DEC TXTVAR+8,PCR ;move it up by one line
TUVAL LBRA TVALID ;ensure valid screen position.

TVALID - Ensure cursor indexes valid screen position
Subroutines - TSCROL.

Stack - 6 + TSCROL stack use.
1/0 - No direct input. TXTVAR used and affected.
Notes - Excess cursor character offset causes setting to Ist

position on next line. Excess line offset causes
scrolling up by one line with line offset set to bottom
line.

TVALID PSHS U D ;save regs used. Index text
LEAU TXTVAR,PCR ;variables from base U.
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LDD 8.U
ensure valid char offset (in B).

CMPB 7,U

BLO  TVLINE
CLRB

INCA

BNE TVLINE
DECA

sensure valid line offset (in A).
TVLINE CMPA 6U
BLO TVEND
LDA 6,U
DECA
LBSR TSCROL
TVEND STD 8,U
PULS PC.UD

;get cursor offsets in A,B.

.char offset okay as long as it

iis less than chars per line,

.else reset to leftmost char

;on next hne, making sure that
;no 8-bit “wraparound” from $FF
;to $00 occurs.

:line offset okay as long as it
.is less than lines on display,
selse set at bottom line (1 less
sthan no. of lines) and scroll
.display up one line.

;put valid offsets back.
;restore regs and exit.

TSCROL - Scroll display up one line, clearing bottom line

Stack - 8.

1/O - No direct input. TXTVAR used but not affected.
Notes - The full width of the screen is scrolled.

TSCROL PSHS U.Y.X,D

LEAU TXTVAR,PCR

;save regs used. Index text
.variables from base U.

.initialise pointers to top, leftmost bytes of firstand
;second lines (Ist and ninth hi-res dot rows)

LDX .U
LDY 2.U

X is destination pointer
.Y is source pointer.

:scroll loop: move bytesfrom(Y) to (X), incrementing
;pointers to next bytes until source gone past screen RAM.

TSMLP LDD . Y++
STD X+
CMPY 4U
BNE TSMLP

:get source and bump pointer

;to destination, bump pointer
;repeat until source pointer has
;gone pastscreenmemory(end+ ).

.initialise D for “clear™ to black (mode 0) or white (mode 1I).

LDD  #0
TST 13U
BEQ TSCLP

LDD  #SFFFF

;30000 to resetall bottom line
:bits if mode 0

skip ifitis,else D = $SFFFF
stoset bottom line bits.

;clear loop: set/reset bits until dest. gone past screen.

TSCLP STD  X++
CMPX 4.U
BNE TSCLP

PULS PC,UY.X.D

;set/reset 2-bytes of destination
;bumping pointer, until pointer
;atend + I

;restore regs and exit.
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Strings and storage

Using a string handling routine is by far the best way to deal with
largeamounts of text. TSTRNG processes astring of characters and
control codes terminating with a null byte (300). So that as many
codes as possible can be used for characters, TSTRNG will
recognise control codes only if they are preceded by $80. Normally
the codes are routed straight to TPRINT but on encountering $80
TSTRNG sends the next code through TCNTRL. The ‘control code
follows’ code $80 never gets past TSTRNG.

TNSTR is a routine to fetch, or rather point to, ‘named’ strings
held in memory. The name is really any 16-bit number, excluding
$0000 which is used by TNSTR to recognise the end of the string
table. You can, however, use two-letter ASC1l codes for the names,
and this does make programs more readable. Each string also has to
have two bytes giving the string length which act as index to the
following string. String tables should be set up as in this example:

STRTAB FCC ‘MS istring name “MS”
FDB 30008 Jlength 8 bytes including null
FCC ‘Message  :string contents
FCB %00 :null string terminator
FCC ‘TX istring name “TX"
FDB  $0005 .5 bytes including null
FCC  ‘text istring contents
FCB  $00 :null terminator
FDB 30000 :table terminator.

A quite simple and readable program sequence is then all that is
needed to first address any particular string and then get it printed:

1.DD #TX string name to D

LEAX STRTAB.,PCR address table start

JSR TNSTR.PCR ;g0 get string ‘TX" address
BCS ERROR serror if no ‘TX string
JSR TSTRNG.PCR  :go print string ‘TX".

The branch to an error handling routine is, of course, not necessary
if you know that string ‘TX' is in the table but it is good
programming practice to take any possible error conditions into
account.

TSTRNG -Character and control string handling routine
Subroutines -~ TCNTRL, TPRINT.
Srack 4 + subroutines.
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110 [nput X points to the first byte of the string. Output
X points to the byte following the string’s null
terminator.

Notes Byte values $01 to $7F and $81 to $SFF are normally

passed on to TPRINT. Value $80 causes the next
byte to be passed to TCNTRL. $00 causes exit from
TSTRNG unless immediately following $80.

TSTRNG PSHS B.CC isave registers used.

LDB X+ ;get char and index next.

BEQ TSEND .exit immediately if null string.
;loop till terminator found

TSLOOP CMPB #380 ;is it ‘control follows™
BNE TSNOTC  ;skip if normal character
LDB X+ ;else get control char, bump

LBSR TCNTRL ;pointer, and send char through

BRA TSNEXT ;control select. Go get next.
TSNOTC LBSR TPRINT  :normal chars printed.
TSNEXT LDB X+ :get next char, bump pointer,

BNE TSLOOP repeat till null terminator.
TSEND PULS PC.,B,CC restore and exit.

TNSTR - Index named string in string table

Stack - 2.

I/O - Input X addresses Ist byte of string table.

Input D contains string name
Output, string found: C = 0. D = string length
X = lIst string byte pointer.
Output, not found: C = 1. D = 0. X points to byte
following table terminator.

Notes — Each string must be preceded by 4 bytes of information.
Bytes | and 2 are the string name. Bytes 3 and 4 give the
offset to the next string. Strings must end with a null
terminator byte. The table must end with two null bytes.

TNSTR PSHS Y ;save Y for use as holder of
TFR D.Y ;requested name throughout.

loop: first, testname, if found getlength & set exit flag.

TNLOOP CMPY  X++ ;test name, moving pointer past.
BNE TNTERM if not name, skip toend test.
LDD X++ \is right string so get length,

ORCC #%00000100 ;:moving X to IstbyteandsetZ
BRA TNLPND  ;so exit from loop occurs.

itest for table end reached, set ‘not found’ flag if it is.

TNTERM LDD —2,X ;was ‘name’double-null terminator?
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BNE TNN EXT 180 get next if not, else set C
ORCC #9%0000000! ;toshowstringnotfound and
BRA TNLPND  :goexitloop (Z=1).

.get length, add to pointer to index next string. Clear exit.

TNNEXT LDD X++ .get length, moving pointer past
LEAX D.X ;and add, indexingnextstring.
ANDCC #%I 1111011 ;clear Zfor noexitfrom loop.

TNLPND BNE TNLOOP  repeat if not string or table end.
PULS PC.Y :restore and exit.

Optimising TPRINT

Since each text line takes up eight rows on the high resolution
screen, the cursor address offset from the screen start is given by the
formula:

(line offset * chars per line * 8) + char offset.

However, in the Dragon and Color Computer there are 32
characters to each line - each screen row uses 32 locations in
PM ODE 4. Since 32 multiplied by 8 is 256, the cursor address offset
can be formed simply by picking up the line and character offsets as
they are in TXTVAR. This makes the TDISPX module of TPRINT
much shorter and quicker.

;TDISPX: Dragon / Color Computer version.

TDISPX TFR D.X :save D in X, pick up line and
LDD 8,U :char offsets as full address
ADDD U ;offset, add screen start to give
EXG D.,X cursor address into X, getting
RTS ;D back. Return to TPRINT.



Chapter Eight
Six Bits of Sound

System independent text or graphics suites are fairly easy to write
since most computers use a similar form of memory mappeddisplay.
Sound generation, on the other hand. tends to be very hardware
dependent. A lot of computers use programmable sound-effects
chips. Some are limited to asimple monotone (sound-on, sound-off)
or have no sound facilities whatsoever. The Dragon and TRS-80
Color Computer each have five possible sound production methods,
except that one source is ‘non-implemented’. The PIA switching of
these isshown in Table8.1. This diversity of sound creation methods
makes it practically impossible to write generally applicable code.

Table8./. Dragon sound source selection

PIA 1 PIA O PIA O Sound
CRB-3 CRB-3 CRA-3 source
(sound enable) (MUX hi-bit) (MUX lo-bit) selected

0 D/A

1 Cassette

0 Cartridge

| not implemented
Oorl single bit sound

P —

The routines in this chapter are written specifically for the
Dragon’s six-bit digital to analog converter (D/A) since thisis by far
the most versatile of the sources. They are divided into two suites
showing different approaches to sound - static and dynamic. The
second of these makes use of the Dragon’s two timer interrupts
which depend on the frequency of the alternating current mains
power supply, which is 50 Hz in Britain. Because of this hardware
dependency both sets of routines are unlikely to work on other
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computer systems and the second set may not work correctly in
other countries where the a.c. frequency is different - in the United
States of America, the frequency is 60Hz. This said, you will
probably find that not too much rewriting of the routines will be
needed to use them on other computers with a D/ A and a high-
frequency (5000 or more each second) interrupt.

The Dragon D/A

Bits 2 to 7 of PIA | PR A (at location $FF20) are output lines to the
D/ A. If aset bit is written to any of these PR A bits then the line goes
high at about +5 volts. If a PRA bit is reset (0) then the line is low at
0 volts. At the other end of each line, in the D/ A, the voltage is
reduced in proportion to the binary place value of the line. This is
achieved by parallel resistors which give double the resistance to
each successively lower value bit. Once past the resistors, the lines
join to produce one analog voltage which varies in proportion to the
value of the six-bit digital number written to PRA-2 to 7.

A digital value is one which is incremented or decremented in
discrete steps whereas an analog value can, theoretically, show an
infinite number of gradations. The D/A output, however, depends
on the digital write to the PIA and so can only have 64 different

Table 8.2. Dragon D/ A output voltage.

PIAl D|A Digital value Approximate
bit  reset  set  voltage out

low  high
PRA-7 5 0 $20 0 2.288
PRA-6 4 0 $10 0 1.144
PRA-5 3 0 $08 0 0.572
PRA-4 2 0 $04 0 0.286
PRA-3 ! 0 $02 0 0.143
PRA-2 0 0 $01 0 0.0715

Sub-total:

Add constant: 0.25

Total D/A output:
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voltage levels but this number is sufficient to obtain reasonably
smooth sound changes. The output voltages don't range from 0 to
+5 volts as you might expect but are limited to a safe middle range of
about 0.25t0 4.75 volts. Table 8.2 shows how to calculate the output
voltage for any digital value 0 to 63.

Sincebits2to 7 of the PRA are used forthe D/ A instead ofbitsOto
S, it is sometimes worthwhile tothink of the values as ranging from 0
to 252 ($00 to $FC) in increments of 4. This alternative approach
affects the way in which the six bits to be used as a D/A value are
selected from the eight bits in a byte before they are written to the
D/A:

LOWAY ASLA ;shift bits 0 to S up into
ASLA ;2 to 7, clearing 0 and 1.
STA $FF20 swrite 6-bit to D/A.

HIWAY ANDA #9%I1111100 :clear unused bits 0 and |
STA $FF20 swrite 6-bit to D/A.,

In a loop which increments or decrements the value outputby 1, the
‘low way" value is changed every iteration but the ‘high way’ value
actually written to the D/A will be affected only every fourth
iteration.

Creating waves

Rapid changes in air pressure cause our eardrums to vibrate and,
after a process of bony amplification and neuron triggering, we hear
sound. We discern the speed of the pressure changes aspitch and the
difference between low and high pressures as amplitude or volume.
These two dimensions to sound are represented graphically in Fig.
8.1 which shows one completecycle of a sine wave. Ifthecycle of air
pressure change this represents is repeated rapidly over a period of
time we hear a constant note. Stretching the wave vertically makes
the sound louder and stretching it horizontally results in a lower
pitch — each second of the note contains fewer cycles.

We can use the D/A to create sound waves by applyingdifferent
voltages to a loudspeaker, usually by way of an amplifier. The
diaphragm of the speaker is controlled electromagnetically so that
higher voltages cause a greater displacement from its rest position.
Alternating between high and low voltages causes oscillation of the
diaphragm which produces air pressure waves. The difference
between the maximum and minimum voltages in a cycle translates
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amplitude

(volume)

frequency (pitch)
Fig. 8.1. Sine wave.

into pressure difference so we can control volume by voltage
variation. Pitch is controlled by the time we take to complete each
cycle of high to low voltage output.

delay

- -

HIGH (1-63)

LOW (0) _—

delay one cycle
Fig. 8.2. Square wave.

Simple alternation between low and high voltage creates a‘square
wave’ with the volume dependent on the high voltage value and the
pitch on the delay between changing state. This is shown in Fig. 8.2.
Square waves are actually very good sounds since they are rich in
harmonics at odd multiples of the fundamental frequency - for
example, a 100 Hz square wave has the harmonic frequencies of 300,
500, 700 and so on. Square waves are not the only interesting wave
shapes, however, and machine code programs operate fast enough
to output several dozen different voltages in each cycle, not just the
two necessary for square waves.

Relating the loudspeaker’s diaphragm movement to Fig. 8.1, the
curve can represent its displacement over a period of time. A
sequence of values, taken from a wave-shape table, can be sent out
through the D/A to position the diaphragm correctly at equal
intervals of time along the cycle. The result is stepped rather than a
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smoothly curved wave form, but it is still quite a good
approximation. Sound waves can be any shape and each has its own
distinctive qualities. Table 8.3 is an example of some fundamental
wave shapes coded in the highest 6 bits of each of sixteen bytes. The
tableis for the routine SOUND to use and $00 is a terminator, so any
zero values within each shape are coded as $01 which will be masked
to produce $00 by SOUND.

Table 8.3, Digital wave shapes (WAVTAB).

No. Values (hexadecimal)

FF 01 FF Ol FF 0l FF 0l FF 0l FF 0l FF 0l FF 00
FO E0O DO CO BO A0 90 80 70 60 50 40 30 20 10 00
10 20 30 40 50 60 70 80 90 A0 BO C0 DO E0O FO 00
FO 10 EO 20 DO 30 CO 40 BO 50 A0 60 90 70 80 00
70 90 60 A0 50 BO 40 CO 30 DO 20 EO 10 FO 00
80 80 80 CO FF CO 80 40 0l 40 80 CO FF CO 80 00
FF FF FF FF 0l FF FF FF FF 0! FF FF FF FF 01 00
0l 04 08 10 20 40 80 FF FC F8 FO0 EO CO 80 01 00

e e Y R N T N =)
o
(=]

SOUND routine

The routine SOUND needs four parameters input in D and X. A
must give the wave shape number and B the number of times the
shape is to be repeated. The low order byte of X must have the
frequency delay - a measure of the length of time between writing
successive table values to the D/A. The high order byte of X isthe
volume control byte. Volume is graded from Y5, to 2%, of full
volume. The digital value from the table is multiplied by this byte to
produce a 16-bit value of which only the highest six bits are used. If
the volume byte is $00 this is taken to mean 256.

An EQU directive sets the length of the table entries as far as
SOUND is concerned. From this it calculates the start address of the
requested waveshape. You can write a table with longer wave shapes
and, if you do, WAVLEN will need to be set accordingly. Another
way to get longer wave shapes is to set the null terminators to $01
SOUND will continue to address successive table bytes until it
reaches a $00.

SOUND - Wave shape sound routine
Stack - 8.
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1/0 Input A = wave shape no. in WAVTAB. (0 to 255)
B = repeat count for wave shape. (I to 256)
X-hi = volume (I to 256)
X-lo = frequency delay (I to 256)

Notes — Initialisation of the D/A as sound source, and sound
enable must have taken place before SOUND. Both
frequency-delay and repeat-count affect the length of the
note played.

WAVLEN EQU $10 ;WAVTAB shapes byte length.
.initialisation by addressing Ist byte of correct entry in
;WAVTAB in X and getting repeat count in B.

SOUND PSHS X.D.CC :save regs used. Index base of
LEAX WAVTAB.PCR :wave table then calculate offset
LDB WAVLEN :to requested shape entry (A)
MUL from table start and add to
LEAX DX pointer. X now at right shape.
LDB 255 ;get repeat count back in B.

:shape repeat loop: end when B=0. Main action to save shape
istart address while processing shape for quick repeat.

SLOOP PSHS X,B ;save shape start and repeat count.
LDA X+ .get Ist shape val., index next,
BEQ SLPEND ;butend shape if terminator.

shape process loop: end on $00 table byte. Multiply table
.value by vol. and write to D/A.

SVALLP LDB 6.S ;get volume and if $00 then skip
BEQ SDTOA ;as D already val. * vol. (256)
MUL ;else D = val. * vol./256.
SDTOA ANDA #%]11111100 :mask out unused bits and write
STA $FF20 :new value to D/A then delay ...
frequency delay loop: determines pitch.
LDB 7.5 .get frequency delay from stack
SFREQ DECB :and loop until B=0 just using
BNE SFREQ up time to get right pitch.
LDA X+ ;get next shape value and
BNE SVALLP ;repeat till null terminator.
SLPEND PULS X.B .get shape start address and
DECB irepeat count back. Repeat till
BNE SLOOP repeat count done.
PULS PCX,D.CC ;restore and exit SOUND.

Sound strings

Each set of sound parameters can, if given a name and placed in a
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table, form part of a string much the same as the text strings of
Chapter 7. The routine SNSTR deals with sound strings rather like
TNSTR and TSTRNG together deal with text.

The string table format is somewhat different for the sets of sound
parameters since each element in the string has four bytes and not
just one as in a text string. The two-byte name comes first, followed
by two bytes giving the number of elements - this value has to be
multiplied by four to index the next string in the table.

SNSTR also deals with initialisation of six-bit sound on the
Dragon - and remembers to switch off the sound enable bit when the
string has been played.

SNSTR - Play named sound string

Modules - SGSTR, SDSTR.

Subroutines - SWITCH, SOUND.

Stack 12 + subroutines.

1/0 Input D contains the name of the sound string.

Output C=1 if sound played, C=0 for string not
found or null string.

Notes - The name in D cannot be $0000 as this is the end-of-
table flag.

:SNSTR: top level, initialises pointer to string table, calls
:modules to address named string and, if found, play it.

SNSTR PSHS UY save regs used. Point U to start
LEAU SSTAB,PCR ;of sound string table.
BSR SGSTR :go find named string, but
BCC SNEND send if not found, else
BSR SDSTR :go process it if found.

SNEND PULS PCU)Y .restore, exit SNSTR routine.

;SGSTR: Input D = string name, U = SSTAB start address.
;out: C=0: U = SSTAB+3. C=1: Y = no. of elements, U is
pointer to Ist byte.

SGSTR PSHS D :name to stack for comparison.
:get name and no. of elements. End if end-of-table.
SGLOOP PULU YD .get string header info.
CMPD #0 stest for e-o-t flag and exit
BEQ SGLEND :with C = 0 if end reached.
.exit loop, string found, if name matches.
CMPD S :if string name = request name
ORCC  #%00000001 sthen set string found flag C
BEQ SGLEND :and exit loop.

.move pointer to next string in table.
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TFR Y.D ;:move no. of elements into D
LEAU D,U :and add four times to pointer
LEAU D,U (4 bytes to each element)
LEAU D.,U ;50 pointer now addresses the
LEAU DU ;name of next string.

SGLEND BNE SGLOOP srepeat till name matches or e-o-t.
PULS PCD .restore name, ret. to SNSTR.

:SDSTR: Input U points to [st byte, Y = no. of elements.
sout: C=0: null string (Y=0). C=1: string played, U at
string+ 1LY =0.

Jfirst, test for empty string. If okay, switch sound on.

SDSTR PSHS X.,D ;save regs used.
CMPY #0 itest for an empty string and
BEQ SDEND .end immediately if it is.
LDA #3508 :else enable sound and select

JSR SWITCH,PCR :D/A at Dragon PlAs.
iprocess loop. Get parameters, call SOUND, till e-o-string.

SDLOOP PULU X.,D :g2et SOUND parameters from string,
LBSR SOUND .indexing next set, and SOUND
LEAY -1Y ;them. Repeat for all elements
BNE SDLOOP .in string.

.disable sound and set string-played flag.
LDA #0 reset bit 3 for switching of f
JSR SWITCH,PCR ;sound enable.
ORCC  #9%00000001 flag string played in C.

SDEND PULS PC.X,.D :restore, return to SNSTR.

Sound sample

SXMPL can be called from Dragon BASIC by an EXEC command.
It sends the names of both strings in the example sound string table
SSTAB to SNSTR. StringSDEAF plays alleight waveshapesin the
sample WAVTAB and string $EEEC plays the second shape at eight
different pitches.

SXMPL PSHS D.CC save regs used.
LDD #SDEAF .go play string “DEAF™
JSR SNSTR,PCR 5
LDD HSEEEC sthen string “EEEC™
JSR SNSTR,PCR 3
PULS PC.D.CC ;restore, return to Basic.

SSTAB FDB SDEAF ;:name
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FDB $0008 .8 elements (parameter sets)
FCB 0.0,0,64 :shape, rep-cnt, vol, fr-del.
FCB 1,0,0,64 3

FCB 2,0,0,64 J(try this string with the

FCB 3,0,0.64 ;repeat-count, volume and
FCB 4,0,0,64 [frequency-delay parameters
FCB 5.,0,0.64 iset to different values.

FCB 6,0,0,64 :Also change shape nulls to $01
FCB 7.0,0,64 to get complex wave shapes.)
FDB SEEEC ;name

FDB 30008 ‘8 string elements,

FCB 1.$20,$80.0 X

FCB 1,$24,$80.SE0 s(see if you can find the

FCB 1.$28.$80,5C0 frequency-delays which
FCB 1.$33,$80,$A0  :approximate to actual

FCB 1,.$40,$80,$80 .notes in an octave.)
FCB 1,$55,$80.560 :

FCB 1,$80,$80.$40

FCB 1,500.580.520 E

FDB $0000 :SST AB terminator.

Dynamic HI-Fl sound

The sound produced by the routine SOUND can be considered
static since neither the frequency nor volume change throughout the
duration of the note. This is useful for playing tunes but not much
good for creating games sound effects. The best effects are produced
when frequency and/ or volume is dynamic. HIFI lets you set start
values and increment or decrement values so both pitch and volume
alter by a programmed amount every Y, second.

Most Dragon owners know that the TIMER function is operated
by an interrupt every Y%, second but many do not realise that this
interrupt is synchronised to the video display logic which renews the
TV picture fifty times a second. This is known as the ‘Frame sync
Interrupt’ (FI). The display consists of 256 horizontal lines and the
Dragon has yet another interrupt synchronised to the line timing -
the ‘Horizontal sync Interrupt’ (HI). When enabled by setting bit 0
of PIA 0 CRA the HI causes an IRQ interrupt 12800 times a second
(256 * 50), one every 69 or 70 clock cycles.

The part of HIFI which writes to the D/A is interrupt driven
which means that it is not called as a subroutine by the main iterative
part, HIMAP. Instead, every other HI signal causes the CPU tostop
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processing HIMAP, save all the registers on stack (excluding the
stack pointer S) and process HIDIVE. The execution time of
HIDIVE is longer than 70 clock cycles so a second interrupt is
ignored, further interrupts being automatically disabled during the
processing of one interrupt. HIDIVE decrements a frequency
counter by I at each interrupt. Every time the counter reaches zero
the D/ A output is changed from low to high or from high tolow. So
HIFI outputs asquare wave with a maximum frequency of 3200 Hz
and a minimum of 12.5 Hz.

The FI signal causes the note length to be decremented by I and
the note ends when this reaches 0. HIFI notes can be accurately
timed from 0.02 to 5.12 seconds. FI also results in the volume and
frequency values being adjusted by the input increment/ decrement
values. HIFI parameters can best be understood by reference to
Table 8.4.

Table 8.4. HIFI sample string (HISS) hexdump. 160 bytes.

Offser Parameter values

0000: A3 20 00 F8 00 OI A340 80 Ol 80 FE A3 10 80 00
0010: 0l 00 A2 08 00 00 A2 08 00 00 A2 08 80 00 A3 20
0020: C000 01 00 A330 FFO00 40 00 A3 00 00 FFO00 10
0030: A200 00 20 A300 00 10 10 00 Al 00 00 FO Al 00
0040: 00 20 A1 00 00 EO A300 00 FO 00 FO A3 10 00 FO
0050: 00 00 A2 10 FO 00 A2 10 EO 00 A2 10 DOO0 A2 10
0060: C000 A2 10 BO 00 A2 10 A0 00 A2 10 90 00 A2 10
0070: 80 00 A210 70 00 A2 10 60 00 A2 10 SO 00 A2 10
0080: 40 00 A210 30 00 A2 10 20 00 A2 10 10 00 A210
0090: 08 00 A2 10 04 00 A2 10 02 00 A2 10 OI 00 00 00

The first two bytes of each sound command are essential. If they
are both nulls HIM AP ends. The second byte is the note length in ¥,
second. The first byte tells HIM AP what other parameters are to be
picked up. If bit 0 is set then volume and volume inc/dec are in the
next two bytes. If bit [ is set then the frequency delay and its inc/dec
value follows. If both are set then the volume parameters are
followed by the frequency parameters. If neither is set then no
further bytes are picked up. Since only bits 0 and I of the command
code are used, the other bits can take any value. In HISS they are
used to identify the command bytes as Ax (except for the byte at
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offset 0068 which is a frequency).
Look at offset 0030 to 003D in Table 8.4:

0030:
0032:
0034:
0036:
0038:
003A:
003C:

HIJAN

A2 00 = frequency follows. Note length 256.

00 20 = fr-delay 256, inc'd by 32 every ¥, sec.
A3 00 = vol. & freq. follow. Length 256.

00 10 = volume 0, incremented by 16 every Y, s.

10 00 =
Al 00 =

fr-delay 16, constant (increment 0).
volume follows. Length 256/50 sec.

00 FO = vol. 0. decremented by 16 every % sec.

HIJAN (just a noise) is a short program to send the address of
HISS to HIFI. Call it from BASIC with an EXEC command and
listen to 46.56 seconds of dynamic sounds.

PSHS
LEAU
JSR

PULS

U ;save the contents of U so it
HISS,PCR ;can be used to send HISS
HIFI,PCR ito HIF1 for playing, then
PC.U ;restore, return to Basic.

HIFI - Interrupt timed dynamic sound routine
Modules - HICUE, HIMAP, HICUT and interrupt routine
HIDIVE.

Stack - 25 including IRQ entire register save.

1/0 - Input addresses Ist byte of a sound string.
On exit, U = string + 1.

Notes Written to work on Dragon/ TRS-80 Color Computer.

JHIFI: top level, just calls modules.

HIF1 PSHS Y.X.D.CC isave registers used. Switch on
BSR HICUE ;D/ A sound and Horiz. Interrupt.
BSR HIMAP ;80 to parameter fetch loop.
BSR HICUT switch off D/A and HI.
PULS PC.,Y.X.D.CC ;restore and exit HIFI

:HICUE: initialise high frequency interrupt and D/ A.
ANDCC &%l 1101110 ;clear C, enable 1RQ interrupts

HICUE

LDA
JSR
LEAX
STX
LDX
STX
LDA
ORA
STA
RTS

#3508 :enable sound and select
SWITCH.,PCR :D/A 6-bit sound.
HIDIVE,PCR  :change IRQ jump address from

$010D :TIMER to HIDIVE.

#30003 :ensure no sound output
HIWORD,PCR until ready inside HIMAP.
$FFOl :enable Horizontal sync Interrupt
#9%00000001 by setting PIA 0 CRA-0

$FFO! :not changing other bits.

creturn to HIFI.
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:HIMAP: parameter fetch and inc/dec loop. Dependent on

iFl occurred flag C=1 or infinite loop at HIWAIT!

HIMAP LDD U++ ;getcode & length, bump point,
BEQ EHIMAP send if $0000 terminator.

stest bits 0 & | of command code:

;00 = note length only (already in B).

101 = get volume byte and volume inc/dec byte in X.

;10 = get freq-delay byte and its inc/dec byte in Y.

111 = get vol, vol-inc/dec, fr-del. fr-del-inc/decin X & Y.

HILOOP BITA  #I stest if volume follows and
BEQ HIFREQ iskip if not, else pick up
PULU X wvol, vol i/d in X, bump point.
HIFREQ BITA #2 stest if frequency-delay follows
BEQ HIWAIT iskip if not, else pick up
PULU Y ifr-d, fr-d i/d in Y, bump point.

;infinite loop if C=0 on entry to HIWAIT. !, second

.interrupt sets C to I, so wait for interrupt to occur.

HIWAIT BCC HIWAIT ;loop till C =1, FI occurred.
every Y, sec. adjust volume and frequency-delay by

:adding respective inc/ dec bytes. Decrement note length

;if 0 get new parameters, else wait for next FI.

PSHS Y. X ;put volume and frequency
LDA 2.8 .variables on stack for access
ADDA 38 :by accumulator for

STA 2.S ;parameter adjustment

LDA .S :which produces dynamic
ADDA 1S ;sound - continual change

STA .S ;of volume and/or frequency.
DECB :if note not finished

BNE HIWAIT :then wait for next ', interrupt.
LDD JU++ .else get next command & length
BNE HILOOP repeat till $0000 terminator.

EHIMAP RTS return to HIFI

JHICUT: switch off high frequency interrupt and D/ A sound.

HICUT LDA SFFOI idisable Horiz. sync Interrupt
ANDA #%I1111110 by clearing PIA 0 CRA-0
STA $SFFO1 :not changing other bits.
LDX #$9D3D .change IRQ jump address from
STX $010D ;HIDIVE to TIMER.
CLRA sswitch off sound enable bit

JSR SWITCH,PCR by clearing all C2 lines.
RTS :return to HIFI.
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JHIDIVE: Interrupt routine, entered on both HI and FI
.interrupts. IRQ automatically saves all registers to

:stack so HIDIVE works on the stacked parameters and on

12 variable bytes, HIWORD: hi-byte is a square wave D/A
:mask, lo-byte is the frequency count loaded from saved B.

HIDIVE LDD HIWORD,PCR :get D/A mask and fr-del.

DECB :count down fr-delay and if
BEQ HIWAVE ;0 then go change voltage out.
NOP selse use up time so
NOP :HIDIVE always takes same
BRA HIDAVE :no. of clock cycles.
HIWAVE LDB 6.S renew fr-delay count.
EORA  #9%I11111100 low to high or high to low
HIDAVE STD HIWORD.,PCR restore changed variables.
ANDA 4S8 .get masked volume (or $00)
STA SFF20 :and write it to D/ A.
;set Cif Fl interrupt also occurred. Else C=0.
LDA SFF03 .get PIA 0 CRB for Fl flag in
LSR .S :bit 7. Shift out stacked C
ROLA :shift out F1 flag and shift
ROL .S .itin to stacked C flag
iread PRA and PRB to clear interrupt flags in CRA and CRB.
LDA $FFO02 iclear FI flag.
LDA SFF00 .clear HI flag.
RTI ;return to interrupted HIMAP.

HIWORD RMB 2 ‘HIDIVE variables.



Chapter Nine
An Interrupt Driven
Clock

Any computer system which can generate a regular interrupt at a
frequency of 1 to 256 per second can have this on-screen clock. It has
to be ‘patched in’ to the normal interrupt service routine. On the
Dragon this means changing the address in the JMP instructions at
locations $010C, $010D and $010E to the address of CLOCK which
must end with a jump to the original destination of the interrupt - to
$9D3D - if you still want the TIMER and PLAY functions. Don’t
expect mellifluous music with the clock in operation - all the tones
have i very pronounced 50 Hz warble with a once-a-second hiccup.
Set the time correctly by POKEing from BASIC.

CLOCK - Interrupt driven, on-screen, 24-hour, digital clock
Modules - CDPRNT.
Stack Normal IRQ stacking + 2.

/0 None in. Registers U, X, D and CC are changed.
Time written to memory-mapped display every second.
Notes If the normal interrupt routine ever uses the

contents of the passed down registers then CLOCK
should be written to PSHS and PULS U,X,D,CC.

IRQHZ EQU $32 .interrupt frequency (S0 for Dr.)
CLOCK LEAU CCOUNT,PCR :index frequency count down and
DEC U idec it, exit CLOCK routine
BNE CLKEND ;if second not up, else
LDB IRQHZ :renew counter for next
STB U ;second count down.

sincrementseconds with any carry to minutes, hours. BCD
J(Binary Coded Decimal) values used for speed and ease.

CLRB ;clear carry flag C so secs get

LDB #3 ;inc’d. Count for 3 values.
CVLOOP LDA U .get time byte after moving

BCS CVLEND ;pointer. Skip if no inc to do.

ADDA #1 ;inc time byte and correct to
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DAA
STA
CMPA
BLO
CLR
DECB
BNE

CVLEND

U

-3.u
CVLEND
U

CVLOOP

;BCD value then

.put it back to string.
.compare with limit value and
.skip if not reached, else reset
ito 0. C clear for next byte inc.
Jloop for seconds, minutes, and
hours, leaving U at hours.

;index screen RAM and print time to screen after converting
;BCD to ASCII decimal digits.

LDX
LDB
CPLOOP BSR
TSTB
BEQ
LDA
STA
CPLEND DECB
BPL
CLKEND JMP

-5,U
#2
CDPRNT

CPLEND
#$3A
X+

CPLOOP
IRQRST

;get screen address. Set count
:in B for 3 loops, ending $FF.
.print hrs, mins or secs

iif seconds just been printed
ithen skip, else

;get colon  separator to
iscreen, bumping pointer.
irepeat for hours, minutes
;and seconds.

.go to normal IRQ routine

;CDPRNT: module to get BCD value at U, convert to two
;ASCII decimal digits and put to screen at X.

CDPRNT LDA
LSRA
LSRA
LSRA
LSRA
ORA
STA
LDA
ANDA
ORA
STA
RTS

U

#3530
X+
U+
#$0F
#$30
X+

.get BCD value,

ishift high order digit

;down into lo-nibble A,
;clearing hi-nibble A

:at same time, thenadd in
JASCII digits hi-nibble and
write to screen, bump pointer.
.get lo-digit, bumping pointer,
:clear hi-nibble and add in
JASCII digits hi-nibble, write
to screen, bumping pointer,
;and return to CLOCK.

.variables and parameters for CLOCK, with only label at
.interrupt frequency needed.

FDB

$0400

;screen RAM address (30400 is

:at top left of Dragon’s normal text screen).

FCB

$24.560,560

shrs in day, mins in hr, secs in

;min. BCD values have to be written in looking like hex.
:These are the limits for comparison with variables ...

FCB
CCOUNT FCB

0.0.0,
IRQHZ

time variables (at midnight).
;second counter.



Appendix A
6809 Architecture

Architecture usually refers to the make-up of the actual micro-
processor, being anything from a simple list of the registers to a
detailed mapping of the full logic. However, since the processor in
isolation is about as much use as 1.5 kg of brain on a butcher’s slab, it
is more illuminating to describe it in relation to the computer system
as a whole.

Figure A.l shows a very much simplified block diagram of the
relationship between the various components of a complete system.
The number of devices and their linkage is far more complex - as a
glance at the schematics for a real system will show you - but in
general programmers are not too concerned with technical detail.

Peripherals stand outside the basic system and the computercan,
in theory, work without any of them - though not to any useful
effect. Inpur/ Ouipur devices are the sockets into which peripherals
are plugged. At their simplest they are mere ports through which
data is transferred. In their most complex form they are ‘intelligent’
or ‘semi-intelligent’ configurations which can perform much of the
decoding of information to and from peripherals or linked systems.

Memor is an essential part of the system and is basically a set of
numbered pigeon-holes for storing numbers. Memory is of two
types: (a) ROM or Read Only Memory where the contents are fixed
(‘burnt-in’ is the jargon term) and cannot be overwritten by new
numbers, and is used for programs which have to be present in the
computer on power-up; (b) RAM or Random Access Memory
which can haveits contents changed. Many computer systems havea
memory-mapped video display where a portion of RAM is
dedicated as video-RAM or screen-memory. These dedicated
memory locations correspond to screen positions and their contents
to dot-patterns appearing as characters or graphics on the screen.
Some systems treat video display in the same way as printers
requiring character codes to be sent through an I/ O device.
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SYSTEM CONTROL DEVICES

JU U0

MEMORY

MAPPED

VIDEOD MEMORY
LOGIC

-l
C._

ADDRESS BUS

)

DATA BUS

o —

L]
L] LT I_

A4
INPUT 7/ OUTPUT DEVICES J

I

PERIPHERALS
( Keyboard, Printer, Modem, Disks, etc.)

Fig. A.1. The main features of a computer system.

Address and data buses are networks of lines running throughthe
system to carry information between the different parts. In an 8-bit
computer theaddressbusis 16lines wideandcanholdany value between
$0000 and $SFFFF (0 to 65535 in decimal) and the data bus is 8 lines
wide and can carry any value from $00 to $FF (0 to 255 decimal).

The CPU or central processing unit contains a small number of
special memory locations referred to as registers, and internal logic
which can perform a few simple operations on binary numbers. The
CPU can also put values on to the address bus, put values on to the
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data bus, take values from the data bus and move values between the
registers.

Svstem control devices perform a variety of tasks mostly ensuring
that the actions of all the other parts are synchronised. An example
of the importance of this synchronisation is demonstrated by the
need for both the CPU and video logic to access screen-memory at
virtually the same time when a program is printing a message. The
conflict is resolved by use of a system clock which regularly and
frequently alternates between two states: high (or active) and low.
The CPU is only allowed to access memory during one state and
video logic during the alternate state. One high and one low state
together constitute a c/lock cyele and the frequency of these cycles is
used as the measure of how fastacomputer operates. Since machine
code instructions always operate in a given number of cycles the
actual time taken by any instruction varies with the cycle rate. The
TRS-80 Color Computer runs at 0.89 MHz (890000 clock cycles per
second). More sophisticated, and expensive, business systems such
as the SEED System 19 usually run at 2 MHz. The Positron 900 is
advertised as havinga 500 ns cycle time (500 nanosecond cycles is the
same as 2 MHz).

170 PORTS 2-80 CPU MEMORY
MEMORY
6809 CPU
170 PORTS

Fig. A.2. Z80 and 6809 memory and 170 ports addressing.

Computer systems are designed around the abilities and
limitations of the processor (CPU) employed. The 1/ O ports of Z80
systems are tied directly to the processor and the Z80 has special
instructions dealing specifically with 1/O. The 6809 has no such
specific 1/ O capabilities butcanonlyaddress memory. Consequently
1/0 devices in 6809 systems have to be tied in to memory addresses
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(see Fig. A.2) and all 1/O operations involve normal memory
reference. Memory or port addressing is accomplished by putting a
16-bit address on the address bus. Data stored to memory or output
has to be put on the data bus. Memory read or input takes data from
the data bus.

All the timing of data movement, address decoding and most of
the system control is taken out of thehandsofthe programmerwho
only has to provide the processor with a sequence of instructions in
numerical form - machine code. The code will say what action hasto
be performed on data and where that data is 1o be found. This is the
point where the CPU registers interact with the system.

The 6809 register set

Accumulators (A, B, D)
Accumulators are the registers in which the results of most

7 07 0
Direct Page DP Condition Codes cc
Register Register (flags)
Accumulator A Accumulator B

(D high byte) (D low byte)

Index Register X

Index Register Y

User Stack Pointer U

Hardware Stack Pointer S

Program Counter PC

15 0

Fig. A3. The 6809 register set.
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operations are stored - especially arithmetic operations. Aand Bare
both 8 bits long and capable of holding values 0 to 255 ($00 to $FF).
D is a 16-bit accumulatorformed by joining A and B. The 6809 has a
few operations which act on 16 bits of data (mostly load and store
operations) but as the data bus is only 8-lines, 16-bit data operations
involve two accesses.

Pointers (X, Y, U, S)

Pointers are 16-bit registers which normally contain addresses. The
Indexed/Indirect addressing modes of the 6809 cause the values
held in the pointers to be put on theaddress bus, sometimes after the
addition of a constant value (programmed in the instruction) or the
value from an accumulator. As an example, the instruction LDA
B.X causes the 16-bit address formed by adding the value of Bto that
of X to be put on the address bus. The system logic decodes this
address to access just one memory location which results in the data
held there being put on the data bus. The CPU receives the data from
the data bus and stores it in the A register. All of this action is
transpar:nt to the programmer who thinks of the operation as
A~—memory at X + B. The pointers can also be used for 16-bit data
store and load and limited arithmetic - designed for address
manipulation.

Index Registers (X, Y)

X and Y are usually referred to as Index registers since that is their
main function, as described above. The instructions LEAX n, Xand
LEAY n,Y also allow them to be used as 16-bit counters.

Hardware Stack (S)

As well as the normal pointer functions, S has a special function as
stack pointer. Stack is an area of memory reserved for temporary
storage of register values generally and for storage of program
addresses during subroutine calls particularly. On a JSR or BSR
instruction, the following actions occur:

memory at S-1—Program Address low-order byte
memory at S-2-—Program Address high-order byte
S—S-2
Execution moves to Subroutine Address
At the end of the subroutine the program address is taken from

memory at S:S+ 1, S has 2 added to it and the program continues.
The instructions PSHS register names will cause a similar action but
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with the values of the registers named. Stack can be anywhere in
memory since S is a 16-bit register and can therefore address any
memory location.

User Stack (U)

U can be used in the same way as S for saving register values on a
User Stack. Program addresses, however, are always saved to the
Hardware Stack by subroutine call instructions.

Direct Page Register (DP)

DP is used by the processor as the high-order byte of memory
addressed by the Direct Page addressing mode. The low-order byte
of the address has to be written into the machine code instruction.
The 6809 can address 65536 different memory locations. In hexa-
decimal the addresses run from $0000 to $FFFF and the leftmost
two digits form the ‘page number’. Pages thus run from page 0 to
page 255 and each page contains 256 different locations. DP can be
set to any page number.

Condition Codes Register (CC)
This is dealt with at length under 6809 Flags. It is a collection of eight
individual bits holding status and control information.

Program Counter (PC)

The Program Counter is the processor’s own pointer register. It is
the 16-bit register which holds the program address referred to in
Hardware Stack. Machine code programs are nothing more than a
sequence of 8-bit numbers ~ one number (byte) to one memory
location - and the processor reads programs in the following way:

(a) the contents of the PC are put on the address bus

(b) the 8-bit value (instruction byte) is taken off the data bus
(c) the PC is incremented by |

(d) the instruction byte is decoded to effect the correct action.

As machine code instructions are anything from I to 5 bytes in
length the read-instruction sequence may be performed up to five
times - each time the PC is pointed to the location of the next byte.
When the processor performs the action of any instruction, the PC
always contains the address of the location afrer the instruction.
This fact is of absolute importance when you use instructions which
depend on the value of the PC - Branches, PC-offset addressing,
exchange and transfer with the PC.
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6809 flags

The Condition Codes register (CC) is different fromtheother 6809
registers in that each of its eight bits is treated as a separate unit.

bit: 7 6 - b 3 2 1 0

e \EIF|H[T|N|Z|V]|C

Fig. A4. The 6809 condition codes register

Exceptions to this rule are the instructions ORCC, ANDCC, PSH,
PUL.. EXG and TFR. Five of the bitsare used to flag the results of
operations and the othersas control bits. Table A.1 gives their uses.

Tuble A.1. 6809 Condition codes description.

Bit Name Description

0 G Carry. Used to store a bit carried out of an
arithmetic result when 8 (or 16 for double-byte
arithmetic) bits arc not enough. Also used as
a ninth bit in rotate and shift operations.

1 v Overflow. Shows if 2's complement arithmetic

overflow has occurred. The overflow flag is

the exclusive-OR of the carry-in with the
carry-out of the result sign bit.

Zero, Setif the result of an operation is zero

(all bits reset).

K] N Negative. Sometimes referred to as the Sign
flag since it is a copy of the result sign bit.

In 2's complement signed numbers. $00 to S7F
is positive (0 to 127 decimal) and $80 to $FF
negative (— 128 to —1 decimal) and bit 7 is thus
the sign bit. In 16-bit values the sign bit is

[¥]
N

bit 15.

4 1 IRQ [nterrupt mask. Regular IRQ interrupts are
disabled when / = I. enabled (allowed to occur)
when / = 0.

5 H Half carry. Shows if any carry out of the low-

order digit of an 8-bit addition occurred. Used
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by the processor during a DAA instruction.
6 F FIRQ Interrupt mask. As I but for fast interrupts.
7 E Entire state. IRQ, CWAI, SWI set £ =1 then
save all registers on stack before dealing with
the interrupt. FIRQ resets £ = 0 and saves only
PC and CC. RT/ (Return from Interrupt) pulls
CC off stack and tests £ to determine whether
all registers of just PC have to be restored.

6809 interrupts

As well as being connected to the address and data buses and various
power and control lines, the 6809 CPU has four input lines which
generate a particular type of response and three program
instructions which emulate the same response. The response made
by the processor is to save the state of the machine (i.e. register
contents) on stack and pass control to one of a number of special
service routines. The signal causing this response is known as an
Interrupt Regquest.

Each type of interrupt requires its own service routine and the
address at which that routine starts is stored in a reserved area of
memory from $FFFO0 to SFFFF. These addresses are known as
Interrupt Vectors. Table A.2 gives the locations for the Most
Significant Bytes and Least Significant Bytes of the vectors, the type
of interrupt and brief descriptions.

Tahle A.2. 6809 Vectored interrupts.

MSB LS8 Type  Description
ar at

FFFE FFFF RESET Operating system start address on power on.

FFFC FFFD NMI1  Non-maskable interrupt. Usually an
emergency situation such as power drop.
The response in this case would be to
switch to a back-up battery.

FFFA FFFB SWI Sofnvare interrupt. Instruction generated
interrupt useful during program development
for setting break-points. Also tor control




FFE8

FFF6

FFF4
FFF2
FFFO

FFF9

FFF7

FFES
FFF3
FFFI

IRQ

FIRQ

SWi2
SWI3
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transfer between system and user programs.
Interrupt Request. The IRQ line is usually
tied to an 1/ O device such as the Periphcral
Interface Adapter (P1A). The main use is
for slow peripherals such as printers to
give a ready signal to the CPU which
meanwhile performs other duties.

Fuast Interrupt Request. Higher priority,
fasteractionequivalent of IRQ. Used for
fast peripherals requiring quick response.
FIRQ can interrupt IRQ unless disabled.

As SWI.

As SWI.

Not used.

Interrupt requests are inpur to the 6809. Corresponding output lines
are used to signal to external hardware that an interrupt has been
recognised and that the CPU is or is not ready to respond.

IRQ SERVICE

RTI —>

routine
e.g. TIMER update

Program
PUSH Ra
REGISTERS /4
PC——vector Program
continues
Interrupt unaffected

PULL /

REGISTERS

Fig. A.5. IRQ action



108 6809 Machine Code Programming

IRQ and FIRQ may be enabled or disabled by the status of the 1
and F flags in the CC register. 1/0 devices using IRQ and FIRQ
often have control bits which allow for interrupt enable/disable.

Interrupts are transparent to the interrupted program except that
stack memory is used for register storage. If your program might be
interrupted (e.g. by the timer on the Dragon or TRS-80 Color
Computer) then you must ensure that there are 12 bytes of stack
space below S for IRQ and 3 bytes below S for FIRQ. Figure A.S
shows the effect of IRQ.



Appendix B
6809 Assemblers

Conventions

Assembler programs (known as source programs - the actual
machine code is referred to as the ohjecs program) are always written
in a tabular fashion. The columns are called fie/ds. Usually the fields
are fixed to certain character positions on the line but some
assemblers do allow a degree of latitude provided the correct
delimiters (characters separating different fields) are used. All
assemblers require a minimum of three fields with optional others. A
printout of object code alongside source program may have as many
as seven fields.

(1) Location Gives the address of the first byte of the machine code
instruction. Usually in hexadecimal.

(2) Code Gives the machine code (1 to 5 bytes) in hexadecimal.
(3) Line number Optional in the source program but when used
refers to the position of the instruction in the program.

(4) Label First necessary field in the source program. At assembly
the label is used as equivalent to the address of the first byte of the
instruction which is labelled.

(5) Mnemonic Operation name, e.g. ADDA.

(6) Operand or Address The data, register or memory reference part
of the assembler instruction, e.g. —15,X or #$FE.

(7) Comment Optional inthe source program. Description of what
the program is doing. Necessary if you or anyone else wants to
understand the program.

The normal delimiters are: (a) spaces - after a label, after the
mnemonic and before a comment which follows an instruction, (b)
commas - between operands, before register names in no-offset
Indexed modes (e.g. .X++), and (c) asterisk — before a complete
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comment line. The delimiters used in this book are standard except
that comments are always preceded by a semicolon (;).

Labels are usually restricted to six characters and muststart with
an alphabetic character (A to Z) or a full stop (.). Some assemblers
require all labels to begin with a specific symbol. The DASM
assembler for the Dragon, for example, insists that all labels begin
with ‘@’. Register names, mnemonics and assembler directives are
not allowed to be used as labels.

Assembler directives
These are instructions to the assembler and are not translated into
machine code even though they are written in the mnemonic field.

Table B.1 gives the usual 6809 directives with their meaning.

Table B.1. Assembler directives.

Form Meaning

ORG Origin. Tells the assembler where in memory the
object code has to start.

EQU Equate label to data. The label can then be used

in the source program operand field and the
assembler will use the equated data in the object

code.
RMB Reserve Memory Bytes. Used to tell the assembler
to leave a given number of locations free.
FCB Form Constant Byte. Put a byte of data into memory
at the current program location.
FDB Form Double Byte. As FCB but two bytes of data.
FCC Form Constant Character. Store the ASCII codes of
the character(s) following FCC.
END End of source program.

Assembler operand forms

The information which anassembler expects to find in the operand
field of a source program corresponds closely to the addressing
mode used, especially in the use of register names. Most assemblers,
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however, expect certain additional information and allow for an
expanded range of expressions.

(1) Labels Labels can take the place of an actual address in the
operand field. The assembler usually passes through a source
program at least twice, the first time to build up a label-address
table. Instructions requiring data will be given the data located at the
label-addressing and instructions needing an address will be given
the address. Program relative instructions will have the offset (label
minus current position) calculated.

(2) Dara The default case is decimal requiring the number only
(optional preceding ‘&’ for program clarity). Other forms are: (a)
hexadecimal starting with “$”, (b) octal starting with*@”, (c) binary
starting with “9%”, and (d) ASCII - single character or character
string (depending on assembler sophistication) preceded by an
apostrophe, e.g. FCC 'STRING. Some assemblers will also allow
arithmetic expressions which reduce to 8-bit or 16-bit integers
(fractions lost).

(3) PC Relative Since the normal Indexed form n,PC used with a
label - say. DATTAB ~ would produce object code in which the
value of DATTARB is used as the offset, a special assembler form
n,PCR is allowed. In this case the distance from the instruction to
DATTAB is calculated by the assembler and used as the offset.
(4) Mode symbols Immediate data requires a preceding hash sign*#".
If the hash is absent the assembler will interpret the data as an
address. Assemblers automatically select Direct mode if the address
given falls within the page indexed by the DP register and Extended
mode if it does not. Direct mode can be forced by preceding the
address with ‘<’ and Extended mode by a preceding >". In Indexed
offset addressing, the assembler automatically chooses the smallest
offset form (none, 5-bit, 8-bit or 16-bit) consistent with the
displacement. Preceding the operand with a ‘<’ forces the 8-bit form
and with a *>’ the 16-bit form.

Some real assemblers

MACE - Editor, Assembler, Monitor for Dragon.

DASM - Assembler for Dragon/ TRS-80 Color Computer. Allows
assembler instructions to be embedded in BASIC programs.
Associated monitor DEMON available together with DASM or on
a separate cartridge.
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DREAM - Editor, Assembler, Monitor from Dragon Data on
cassette or cartridge. ALLDREAM version is a full development
package with breakpoints, trace, disassembler, etc.

EDTASM - Editor, Assembler, Monitor package on cartridge for
the TRS-80 Color Computer. Monitor-debugger part is ZBUG
allowing breakpoint setting, etc.

RALL! - OmegaSoft relocatable assembler and linking loader
SA-92 MNEMONIC ASSEMBLER - Smoke Signal Broadcasting
assembler. Allows multiple source files.

This list is, or course, by no means exhaustive. There are many
assemblers on the market — several for each 6809 system - and
almost all vary to a greater or lesser extent fromthe Motorola 6809
assembler standard.



Appendix C
6809 Instruction Set

First some facts and figures. There are 59 different rypes of
instruction - LD, PSH, BLE, ASR, and so on. Taking into account
the use of different registers to implement these types (CMPA,
CMPB, CMPD, etc.) there are 139 forms of instruction. Many of
these act on memory indicated by many different addressing modes
and if we include these differences, we find that there are over 4800
instructions at our disposal. On sheer volume the 6809 totally
overwhelms the two most popular 8-bit processors - the Z80 has
about 700 different instructions and the 6502 a mere 151. Of course
the number of instructions is not the only factor to determine the
efficiency or power of a microprocessor. The execution time of the
instructions, the ease of performing higher precision (i.e. 16-bit, 32-
bit, floating point) arithmetic and flexibility in dealing with external
logic - intelligent printers, hardware-decoded keyboards, etc. - are
just a few of the many criteria you might use. However, the size and
complexity of the instruction set is very important to the
programmer.

Larger instruction sets contain a greater degree of redundancy.
The instructions in the small repertoire of the 6502 each perform
very different tasks. 6502 programming is consequently a rather
mechanical job for the programmer who has very little choice in how
he orshe will actually code a program. The 6809 programmer, on the
other hand, is faced with a bewildering three-dimensional array of
instructions - dimensioned by type, formand mode many of which
seem to do exactly thesame operation. JSR n,PC doesin three bytes
and eightclock cycles what BSR ndoesin two bytesand seven clock
cycles. And at the end of the subroutines we have just called, do we
PULS PCor RTS?Inanexpansive mood we mighteven LDX ,S++
followed by TFR X,PC. The redundancy illustrated by these few
examples is not an oversight of the 6809 design team, nor is it an
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unfortunate quirk of the three-dimensional structure of the
language. Redundancy is built in to aid the programmer.

Rather like that extinct species of schoolteacher who defined his
goal as instilling the three ‘Rs’ of reading, 'riting and ’rithmetic (but
seemingly not spelling) in the minds of his pupils, the programmer is
often concerned with the ‘three Ss’ of structure, speed and size. The
story of the programmer who wrote a subroutine that was not only
fast and compact but also so well structured that even his team
leader understood it is probably apocryphal: most programs have to
trade off two of the three Ss to achieve the third. The high
redundancy of the 6809 instruction set allows us to write the same
program in many different ways using varied proportions of the
three Ss as circumstances dictate.

The superabandance of 6809 instructions is undoubtedly an aid to
the experienced 6809 programmer who probably gives as much
conscious thought to his choice of instruction as to his choice of
words in a casual conversation in his own native dialect. For a
beginner in the language it presents problems. A set with very few
instructions is easy to learn: for each task there is one instruction
that will do the job so no choices have to be made; the operation
performed by each instruction is seen as clearly distinct from those
of other instructions. The many instructions of the 6809 set seem to
defy the‘one task- one instruction’ classification which makes foreasy
learning and use. | mentioned earlier that the 6809 set has a three-
dimensional structure based on instruction type (the sort of
operation performed), form (in most cases this defines the register
used) and mode (whether registers or memory or both are used and
the way that memory is accessed). | then gave an example in which
two instructions of both different type and different mode
performed identical jobs. Clearly, if this sort of boundary crossing
happens often - and it does - then learning the 6809 language and
understanding its finer points only by type, form and mode is going
to be very frustrating.

Tables C.1 to C.11 classify the instructions mainly by type. A few
instructions are repeated in more than one group but generally each
instruction has been consigned to a single group. The problem with
this sort of single-entry grouping is that most instructions really
belong to a number of diverse classes. For example, all instructions
which use a specific register could be grouped together. To find if
you can perform an ‘Arithmetic Shift Left’ on the X register you
would refer to the ‘Action on X’ table and find that although you
can ABX, LEAX, STX, LDX, PSHS X, etc. you cannot ASLX.
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You might have found out more quickly by looking at a ‘Rotate and
Shift’ table which would inform you that ASL can be carried out on
the contents of the A and Bregistersand on a memory byte but not
on X, Y, U,S,DP, Dor PC. A useful table to compose would be one
giving all the methods of jumping to and returning from a

subroutine.
Compiling tables of related instructions for reference during

coding is a sound method of learning what options are available for
performing various tasks. The chances are that if your brain has
gone to work on classifying the instructions to make the tables then
you won’teven need to look at the tables when you program - except
to check up on result flags or instruction timings.

Putting the bytes together

Tables C.1 to C.11 give only the mnemonic and single-byte ‘opcode’
(in some cases a 2-byte opcode is needed and this is given). But 6809
instructions can be anything from | to 5 bytes long and the
assembler mnemonic has often to be followed by one or more
operands defining the registers and/or memory operated on. So
how do you decide what can follow the mnemonic and opcode?

The addressing mode and a pinch of common sense will tell you
exactly how to form the complete instruction.

(1) Inherent The operands are implied by the mnemonic and so the
code is usually just | byte. A few instructions classed as Inherent do
need a second byte giving certain information: CW Al needs an 8-bit
value to AND with the CC register, EXG and TFR need two register
names with their codes in the second byte, and PSH and PUL need
the names of all the registers being pushed or pulled.

(2) Direct Either 2 or 3 bytes. The last byte gives the location within
the page of memory indexed by the DP register. In assembler form
this can be a number less than 256 or a label.

(3) Extended Either 3 or 4 bytes. The last two bytes specify a memory
address. Assemblers will accept either a number less than 65536
(SFFFF or less) or a label.

(4) Immediate Operations using 8-bit registers expect a single byte of
immediate data (i.e. a value written as the last byte of the
instruction) and 16-bit registers need 16 bits of data. In assembly
language the data could have been given a name by the EQU
directive or have been putin a labelled memory location. I n both of
these cases the assembler will accept a label as operand.

(5) Relative Either an 8-bit or 16-bit signed offset to the PC written
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as the last 1 or 2 bytes of the instruction. Assemblers will accept a
label as operand and calculate the offset (and decide whether to use
the Branch or Long Branch form).

(6) Indexed/ Indirect All these modes need a post-byte immediately
following the opcode, so look up Table C.13 for the post-byte. Table
C.12 gives the operand form which corresponds to the particular
mode and post-byte. The notes to Table C.12 tell you when any
other bytes are needed. Assemblers will, as always, accept valid
labels in place of addresses and offsets.

Key to the tables

Mnemonic Acronym of the operation performed (e.g. BGE
is Branch if Greater or Equal).

Action Description of what the instruction will
cause the processor to do.

Time Execution of each instruction in system

clock cycles. A 6809 running at 2M Hz uses

up two million cycles every second; each

cycle is 500 ns (nanoseconds). The total

execution time of instructions using the

Indexed/ Indirect modes is the sum of the

cycles given against instruction (Tables C.I

to C.11) and Indexed form (Table C.12).
HNZVC Flags affected by operations.

Flag name: state depends on result.

0 always reset to 0.

1 always set to I.

? state undetermined.

flag not affected by operation.

M Single byte memory location.

M:M+1 Consecutive memory locations holding a 16-bit
value. Pointers point to the high-order byte.

Code Instruction opcode given as a pair of hexadecimal
digits. May appear under various Addressing
modes.

Imm., Dir., Ind., Immediate, Direct Page, Indexed/ Indirect and

Ext. Extended Addressing modes. Other modes are
Inherent and Relative.

—and— Data (bit, byte or double-byte) is moved or

assigned in the direction of the arrow.
Logical AND (see below)
v Logical INCLUSIVE OR (see below)



l.ogical EXCLUSIVE-OR (see below)
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AND, OR and EOR operate on corresponding
individual bits only in the following way:

a b a”b avb avb

0 1] 0 1] 0

0 1 0 1 1

| 0 0 I [

I 1 I I 0

Table C. 1. 8-bit Accumulator Only Operations.

Accumulator A Accumulator B
Mnem  Code Mnem  Code Action Time HMNZVC
ASLA 48 ASLB 58 C—R/~Ry=0 27? NZ V C
ASRA 47 ASRB 57 R:—R;~Ri—=C 2 ? NZ —C
LSLA 48 LSLB 58 C—R~Ry=0 2 —NZVC
LSRA 44 LLSRB 54 0—R/~Ro—C 2 07— C
ROLA 49 ROLB 59 C—R/~Ri=C 2 —NZVC
RORA 46 RORB 56 C—=R~R—C 2 NZ —-C
DECA 4A DECB 5A R—R-1 2 NZV
INCA 4C INCB 5C R—R+l 2 —NZV
CLRA 4F CLRB SF R—0 2 0100
COMA 43 COMB 53 R-R 2 —NZo |
NEGA 40 NEGB 50 R—R+1 27 NZVC
TSTA 4D TSTB SD R-R 2 —NZO
Notes:

. R-~R. indicates that all bits are shifted by one place left or right
2. R is the onc’s complement of R (i.e. K«SFF).
3. R—R+1 has the same effect as R—(-R.
4. R is cither of Accumulator A or B.
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Tuble C.2. 8-bit Memory Only Operations.

Mnem Imm  Dir Ind Ext Action HNZVC
(—) (6) (6+) 7
ASL 08 68 78 C—M~My=0 ? NZ VC
ASR 07 67 77 M=M;~My—=C ? N Z —C
LSL 08 68 78 C—M;~My—0 NzvC
LSR 04 64 74 0—=M;~ Mo—C 02z —-C
ROL 09 69 9 C—M7~M;—C NzvC
ROR 06 66 76 C=M;~M—C Nz —-C
DEC 0A 6A TA M-=M-I NZV —
NG 0c 6C 7C M—M+1 NZV —
CLR OF 6F 7F M-—0 0100
coOM 03 63 73 M—M NZO0 I
NEG 00 60 70 M—M+1 > NZVC
TST 0D 6D 7D M—M NZO
Notes:
I. See notes to Table C.1.
2. Instruction times (clock cycles) are given at the column heads.
3. M is the addressed single byte of memory.
Table C.3. Test and Compare.
Mnem Imm  Dir Ind Ext Action HNZ VC
(2) (4) (4+) (5)
TSTA (inherent. Code:4D. Time:2) A—A NZO
TSTB (Inherent. Code: SD. Time: 2) B-—B NZO
TST 0D 6D 7D M-M NZO
BITA 85 95 A5 BS ANM NZO
BITB C5 D5 E5 F5 BA"M NZO0 —
CMPA 81 91 Al Bl A-M ?"NZVC
CMPB Cl DI El Fl B-M ?NZvVC
CMPD 1083 1093 10A3 10B3 D-M:M+lI NZvVvVC
CMPU 1183 1193 I1TA3  11B}  U-M:M+I NzZvCcC
CMPX 8C 9C AC BC X=M:M+1 NzZvC
CMPY 108C 109C 10AC 10BC Y-M:M+I NzZvC
CMPS 118C  119C 11AC [IBC S—-M:M+1 NzvC
Notes:

given at the column heads.

ENEWEN)

. Add 2 cyclesfor TST and CMPX in all modes.
Add 3cyclestor CMPD, CMPU, CMPY and CMPS in all modes.
. Only statusis affected bytheseinstructions: memoryand registers are unchanged.

. Basic instruction times (clock cycles) for BITA, BITB. CMPA and CMPB are

G Sl o gl s e T
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Mnem  Imm Dir Ind Ext Action HNZVC
(2) (4) @+) (9
ADCA 89 99 A9 B9 A—A+M+C HNZ VC
ADCB C9 D9 E9 F9 B— B+M+C HNZVC
ADDA 8B 9B AB BB A—A+M HNZVC
ADDB CB DB EB FB B—B+M HNZVC
ADDD C3 D3 E3 F3 D—D+M:M+1 HN Z V C
SBCA 82 92 A2 B2 A—A-M-C T NZVC
SBCB C2 D2 E2 F2 B—B-M-C ? NZVC
SUBA 80 90 A0 BO A—A-M " NZvVC
SUBB CO0 DO EO FO B—B-M ? NZVC
SUBD &3 93 A3 B3 D—D-M:M+1 NZvVC
ANDA 84 94 A4 B4 A—AAM NZO
ANDB C4 D4 E4 F4 B—B~AM NZO
EORA 88 98 A8 B8 A—AvM NzoO
EORB C8 D8 E8 F8 B—B¥M NZO
ORA §8A 9A AA BA A—AvM NZO
ORB CA DA EA FA B—-BvM NZzZO

Notes:

1. Instruction (clock cycles) for 8-bit operations are given a t the column heads.

2. 16-bit operations (ADDD and SUBD) take 2 cycles longer in all modes.
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Tuble C.5. Register-Memory Transfer.

Mnem [Imm Dir Ind Ext Action HNZ VC
(2) (4) 4+) (5

LDA 86 96 A6 B6 A—M NZO
LDB C6 D6 E6 F6 B—M NZO
LDD CC DC EC FC D—M:M+1 NZO
LDX 8E 9E AE BE X—M:M+1 NZO
LLDY I108E I109E 10AE I10BE Y—M:M+! NZO
LDU CE DE EE FE U-M:M+1 NZO
LLDS 10CE [10DE 10EE [I0FE S—M:M+1 NZO
STA 97 A7 B7 M—A NZO
STB D7 E7 F7 M-—B NZO
STD DD ED FD M:M+I1-D NZO
STX 9F AF BF M:M+1—X NZO
STY 109F 10AF 10BF M:M+I1-Y NZO
STU DF EF FF M:M+1-—-U NZO
STS 10DF 10EF 10FF M:M+1-S NZO
Notes:

1. Basic instruction times (clock cycles) for 8-bit transters (A and B) are given at
the column heads.

2. Add I cycle for transfers involving D, X or U in all modes.

3. Add 2 cycles for transfers involving Y or S in all modes.
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Tahle C.6. Stack Operations.

Mnem Code Time  Action HNZVC

PSHU 36 5+ S/U—=S/U~1: (S/U)—byte.
PULS 35 5+ For each byte pulled:
PULU 37 S5+ byte—(S/U): S/ U—S/U+1

PSHS 34 S+ %For each byte pushed: f — —

Notes:
All instructions require a post-byte with the following register-bit
correspondence:

Bit: 7 6 5 4 3 2 1 0
Register: PC~ U/S Y X DP B A cC

. Post-byte ser bits result in the corresponding registers being pushed/pulled.

3. PSHS/PULS will push pull U when bit 6 isset. PSHU/PUI U will push/ pull
S when bit 6 s set.

. Higher-bit registers are pushed betore lower-bit, lower-bit registers are pulled
before higher-bit.

5. Add I clock cycle to the basic instruction time for each hyse (not register)

pushed or pulled.

N

IS

6. Flags (CC register) are unaffected only if no value is pulled to the CC register
during PULS or PULU
Tuble C.7. Register Exchange and Transfer.
Mnem Code Time  Action HNZVC
EXG IE 7 Register | — Register 2
TFR IF 7 Register 1— Register 2
Notes:

I. Both instructions require a post-byte with the high- and low-order hexadecimal
digits giving the codes for registers | and 2 respectively.
2. The register-digit correspondence is:

(16-bit regs.) (8-bit regs.)
Digit: 0 1 2 3 4 S B 9 A B
Register: D X Y U S PC A B cC DpP

3. EXG or TFR is illegal between registers of differing length.

4. Flags (CC register) are unaffected only i the CC register is not the destination
register.

5. Theeffect of codes 6, 7. C. D. E and F is undefined.
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Table C.8. Pointer Manipulation.

Mnem Dir Ind Exi Action HNZ VC

JMP  0OE (3) 6E (3+) 7E (4) PC—¢£A
JSR 9D (7) AD (7+) BD (8) Stack —PC

PC—EA
LEAX 30 (4+) X—FA z
LEAY 31 (44) Y—EA ——Z7Z ——
LEAS 32 (4+) S—FEA
LEAU 33 (44) U—FA

Notes:

I. Instruction times (clock cycles) are given in parentheses.

2. All of these instructions are designed t o deal with pointerst o values rather than
actual values. Hence the normal meaning given to each addressing mode does
not apply. One level of indirection is removed.

. EA is Effective Address. This is distinct from the notion of a [6-bit value as
illustrated in the following examples:

(a) LDX 2.Y will load X with the value held in memory ar Y+2:Y+3 but
LEAX 2.Y will load X with the value (address) held in ¥ and add 2 to that
value.

(b) JMP $89AB (Extended mode) will load the PC with the value (address)
$89AB NOT the value held in memory at $89AB and $89AC.

w
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Table C.9. Program Relative Branching.

Mnem Code  Condition Mnem Code  Condition
NzZVC NzZVC

(a) Simple conditional

BCC 24 ———0 BCS 25 1
BNE 26 0 —— BEQ@ 27 —1
BVC 28 0 BVS 29 =
BPL.  2A 1] BMI 2B I —
(b) Unsigned conditional
BHI 22 0 —0 BLS 23 { 1 }
|
BHS 24 0 BLO 25 1
(¢) Signed conditional
BGT 2E {0 0 0}7 BLE 2F —
10 1§f— {0 —1 7§
1 0
BGE 2C {0 0 BLT 2D 0 —1 —
I — I} - { 1 —0 — }

(d) Unconditional

BRA 20 ahvays BRN 21 never
(e) Subroutine

BSR 8D always (after pushing PC 1o hardware stack)

Notes:

. Flags (CC register) are unaffected by Branch instructions.

2. The flag states listed are those causing the branch. Where more than one
configuration is given. any one of the patterns will cause branching.

3. The mnemonics and codes given are for the 8-bit offset forms of the Branch
instruction. Each has a 16-bit Long Branchform with the following differences:
(a) the mnemonic has an ‘L' prefix (e.g. LBCC),(b) the code has a $10 pre-byte
(e.g. $1024).

4. The instruction must be followed by a byte giving a signed value offset (=128 to
+127). Long Branches must be followed by a 2-byte signed offset (~32768 to
+32767).

5. Action: If condition true then PC—PC + offset.

6. Time: 8-bit form: 3clock cycles (Branch or No Branch); 16-bit form: Scycles (No
Branch), 6 cycles (Branch).

7. Special cases: BSR takes 7 cycles. A special form of LBRA (code $16) takes 5
cycles. A special form of LBSR (code $17) takes 9 cycles.

8. BRN (Branch Never) can be used for fine-tuning in precision timing situations
or to mark a possible branch position during program development.
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Tuble C.10. Interrupts.

Mnem Code  Action HNZ VC

CWAI 3C CC Register ~ data: E Flag—1 Note |

Stack—PC,U,Y.X.DP,B,A.CC
Wait for interrupt.

SWI 3F (Software [nterrupt) = Se

E Flag—1

Stack—PC.U.Y,X.DP.B,A,CC

F Flag—1I: I Flag—1I

PC~—Interrupt Subroutine Vector
stored in SFFFA and SFFFB

SWI2 103F  A4s SWI excepr F and | Flags unaltered — — — — —

and PC—Vector at SFFF4 and $FFFS

SWI3 1I13F  As SWlexcepr F and | Flags unaltered —

and PC—Vector at SFFF2 and $FFF3

SYNC 13 Halt processing until interrupt. _—

Ifinterrupt disabled (F or [ = 1) or
interrupt request <3 cycles Then
continue processing Else stack
registers and transfer control to
interrupt service routine.

RTI 3B Return from Interrupt. Note 2

CC—Stack
I/ E Flag = 0 Then PC—Stack
Else A,B.DP.X.Y,UPC—Stack

Notes:

1.

CW Al requires a second (immediate data)byte to be logically ANDed with the
CC register. The purpose of thisis tocleareither orboth of the interruptflags (F
and 1) before suspending operation to enable interrupts. Status (flags) thus
depends on the result of the AND.

. Status is restored to that before the interrupt occurred.
. Time: SWI, SWI2 and SWI3 execute in 19, 20and 20 clock cycles respectively.

RTltakes 6 cyclesif only the CC and PC registers have to be restored. |5 cycles if
all registers are to berestored. CW Al and SYNC have time specifications of 20
and 2 cycles. respectively, but since both of these instructions wait for external
events the timing is indeterminate.

. Software interrupts are most often used for setting breakpoints and ‘on error’

service routines.

. CWALI is used to provide an extremely quick response to an expected interrupt,

since the state of the machine (registers) is saved before the interrupt occurs.

. SYNC is used to synchronise operations to external events. Short pulse

interrupt requests (less than 3 cycles) will simply restart programexecution from
the next instruction.
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Table C.11. Program Control and Special Purpose Arithmetic.

Mnem Code  Action Time HNZVC
NOP 12 No Operation 2

ORCC 1A CC~—CCvdata 3 Note |
ANDC 1C CC-—CCAdata 3 Note !

RTS 39 PC~—Stack 5 —_——
ABX 3A X—=X+B (unsigned) 3 _———
DAA 19 A-—BCD adjusted A 2 —NZO0C
MUL 3D D-—AXB (unsigned) 11 — 27 C
SEX ID D~ 16-bit B (A-sign B) 2 —NZO0

Notes:

L

o> w

ORCC and ANDCC require a following byte of immediate data. Status is the
result of the logical operation.

2. ORCC is used to set flags, ANDCC to clear them.
3.

Note the difference between 4 BX. where B is anunsigned value inthe range 0 to
255, and L.LEAX B, X where B is a signed value in the range —128 to +127.

. After MUL the C Flagcontains the signof B. Thisis to facilitate rounding up the

high-order resultbyte in A.

. RTS may also be effected by PULS PC.
. DA A isused following arithmetic operations on Binary Coded Decimal values

to correct the result to BCD. Since it uses the Carry and Half-carryflags. it must
be used before any other instructions alter the status.
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Table C.12. Indexed Addressing Modes — Form and Timing.

Non-indirect  Indirect
Type Form  Time  Form  Time

Constant Offser from R

No offset .R 0 [.R] 3

5-bit offset p.R 1 defaults 10 8-bit

8-bit offset n,R | [n.R] 4

16-bit nn, R 4 [nn,R] 7
Accumulator from R

A offset (8-bit) AR 1 [AR] 4

B offset (8-bit) B.R | [B.R] 4

D offset (16-bit) DR 4 [D,R] 7
Auto Increment/ Decrement R

Increment by | R+ 2 not allowed

Increment by 2 R++ 3 [.(R++]6

Decrement by | R 2 not allowed

Decrement by 2 ~-R 3 [.-.-R] 6
Constant Offset from PC

8-bit offset nPC | [n,PC] 4

16-bit offset nn,PC 5 [nn,PC] 8
Extended Indirect

16-bit address use Ext. Mode [nn] S

Notes:

l.
2.

3.
. nisan 8-bit signed of fset (range — 128 to+127) which must follow the post-byte.
. nnisa l6-bit signed offset (range—32768 to+32767 which must follow the post-

[V

~

R is any of registers X, Y. U or S.

Time gives the number of clock cycles to be added to the basicinstructiontimes
given in Tables C.1 to C.I1.

p isa 5-bit signed of fset(range —16 to+15) encoded in bits4 to 0 of the post-byte.

byte.
The No offset. 5-bit offset, Accumulator offset and Auto Inc/ Dec forms do not
need data bytes following the post-byte.

. Since the meaning of the Indirect AutoInc/ Dec Mode isto indirectly use a table

of 16-bit addresses. an increment or decrement by | would be an error in
programming and is not allowed.

. The usual assembler forms for the Constant Offset from PC type are

[/abel.PCR] and label. PCR. The assembler will calculate the offset at assembly
time.
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Table C.13. Indexed Addressing Modes - Post-byte Codes.
(a) Indexing by X. ¥, Uor S

R: X Y U S R X Y U S
0.R 00 20 40 60 —16.R 10 30 S0 70
I.R 01 21 41 6l —15.R I 31 st 71
2.R 02 22 42 62 -14.R 12 32 52 72
3R 03 23 43 63 -13.R 13 33 53 73
4R 04 24 44 64 —-12,R 14 34 54 74
S.R 05 25 45 65 -1LR 15 35 55 75
6.R 06 26 46 66 —10.R 16 36 56 76
7.R 07 27 47 67 -9.R 17 37 57 77
8.R 08 28 48 68 —8.R 18 38 S8 78
9,R 09 29 49 69 -7.R 19 39 59 79
10.R 0A 2A 4A 6A —6.R 1A 3A SA 7A
II.R 0B 2B 4B 6B —5.R IB 3B SB 7B
12R 0C 2C 4C 6C —4R IC 3C 5C 7C
13.R 0D 2D 4D 6D -3.R ID 3D SD 7D
14.R 0E 2E 4E 6E -2.R IE 3E SE 7E
I5.R OF 2F 4F 6F —-1.R IF 3F SF 7F
R+ 80 A0 CO EO LR+] not allowed
.RH 81 Al Cl El [.RH] 91 Bl DI Fl
—R 82 A2 C2 E2 [—R] not allowed
——R 83 A3 C3 E3 [.——R] 93 B3 D3'F3
R 84 Ad C4 Ed [.R] 94 B4 D4 F4
B.R 85 AS CS ES [B.R] 95 BS DS FS
AR 86 A6 C6 E6 [A.R] 96 B6 D6 F6
n.R 88 A8 C8 E8 [n.R] 98 B8 D8 F8
nn.R 89 A9 C9 E9 [nn.R] 99 B9 D9 F9
D.R 8B AB CB EB [D.R} 98B BB DB FB

(b) Program Counter Offset and Extended Indirect

Four options Four options
nPC 8C ACCCEC [n,PC] 9C BC DCFC
nn,PC 8D ADCDED [nn,PC] 9D BD DDFD

nn use Extended Mode [nn] 9F BF DF FF




Appendix D

ASCIl Control and
Character Codes

ASCII (American Standard Code for Information Interchange)
control codes (300 to $1F and $7F) were designed for terminal
control. Most of them have no use within the stand-alone micro. A
few are often used as cursor control codes by character and string
print routines. The character codes ($20 to $7E) are almost always
used for inter-computer communicating and often for file storage on
tape or disk. They are not always used for internal character
representation.

Table D.1. Control code meanings.

$00 NUL Null $10 DLE Data Link Escape

$01 SOH Start of Heading $11 DCI Direct Control !

$02 STX Start Text $12 DC2 Direct Control 2

$03 ETX End Text $13 DC3 Direct Control 3

$04 EOT End of Transmission $14 DC4 Direct Control 4

$05 ENQ Enquiry $15 NAK Negative Acknowledge
306 ACK Acknowledge $16 SYN Synchronous Idle

$07 BEL Bell $17 ETB End Transmission Block
$08 BS Backspace $18 CAN Cancel

$09 HT  Horizontal Tab $19 EM  End of Medium

$0A LF Line Feed $IA SUB Substitute

$0B VT  Vertical Tab $IB ESC Escape

$0C FF  Form Feed $I1C FS Form Separator

$0D CR  Carriage Return $ID GS  Group Separator

$0E SO  Shift Out $IE RS  Record Separator

$0F SI Shift In $1F US  Unit Separator

$7F DEL Delete $20 SP Space
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Tuble D.2. ASCII character codes.

L.S. Moxt significant hexadecintal digit

digit 2 3 4 5 6 7
0 SP 0 @ P X p
| ! 1 A Q a q
2 2 B R b r
3 # 3 C S c 5
4 3 4 D T d t
5 % 5 E U e u
6 & 6 F \% I v
7 ) 7 G w g w
8 ( 8 H X h X
9 ) 9 I Y i y
A * 7 1 z J 7
B + K ko
C < L \ | |
D - = M ] m }
E > N ! n -
F % (0] = o DEL




Appendix E
Some 6809 Computer
Systems

The following list is just a small sample of the available 6809
systems. Most are designed as business machines or. boards for
industrial control applications. In the home computer field, only
Tandy/Radio Shack and Dragon Data have built complete systems
around the 6809, although you can get 6809 add-on boards for other
home/small business computers.

The TRS-80 Color Computer

This computer is built around the MC6809E processor with a clock
speed of 0.894 MHz. Other on-board hardware devices include the
MC6883 Synchronous Address Multiplexer, MC6847 Video
Display Generator and two MC6821 PIAs. Video display is output
to a normal television and is capable of thirteen different modes
fromtext with a 32 X 64 pixel graphics capability toa 192X 256 dot
graphics without text. Sound can be software generated and output
to a television speaker. Available with either 1 6K or 32K dynamic
RAM.

Further details can be obtained from most Tandy dealers or from
Tandy's Walsall head office on 0922 648181.

The Dragon 32 and 64

The Dragon is remarkably similar to the Color Computer and is
available from many high street computer and electrical stores.
If you can't get the details, try Dragon Data on 0792 580651 .
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Positron 900 and 9000

The Positron 900 is based on the MC6809 and is built as a single
board requiring the attachment of keyboard terminal. Dynamic
RAM memory is expandable from 64K to 256K and up to 128K of
on-board ROM is supported. The processor unit has four RS232C
serial ports and an IEEE 488 interface. Up to seven processor units
and eight disk drives can be networked using the Positron 9300
Network Controller which has its own 6809 processor.

The Positron 9000 Work Station incorporates the 9000/ Main
Processor Board and the 9000/2 Video/Keyboard. The keyboard is
software decoded for easy user modification. The video output is
Viewdata compatible with 24 rows of 40 characterson a 14 X 10 dot
matrix. The screen is |K memory mapped or 10K memory mapped
for 240 X 240 pixel graphics, with mixed text. Video output is to
composite video, direct video or channel 36. The board also has a 0
to4kHz tone generator for output to an external speaker.

Further details are available from Positron Computers on 09252
29741.

SEED System 19/64DS5

This is based on a CPU board with a 6809 processor running at 2
MHpz, a disk controller and 57K RAM. It has three RS232C serial
interfaces, one parallel interface and one SASI interface for a
Winchester disk add-on.

System 19 add-on boards include the SCB-69 CPU board with a
6809 processor at 2 MHz, IK of scratchpad RAM and a 10 ms
interrupt real-time clock with signals from months to 0.001 seconds,
the SEED PTM-1 board based on the MC6840 timer with three 16-
bit counters and associated control registers, a 256K dynamic RAM
board and several D/A and A/D converters.

Details from Strumech Engineering Electronic Developments
Ltd on 05433 78151 or 4321.

Windrush Micro Systems
Windrush supply a large range of systems and add-on boards

intended mostly for industrial control or as development systems.
The Euro-3X development system features a 2 MHz 68B09
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processor, 56K static RAM with battery back-up, two R6551A
RS232 ports, two R6522 parallel ports, seven 16-bit timers (one
MC68B40 and two R6522A) and a battery backed MM 58167 clock-
calendar.

The PRIVAC BT-1 512 by 480 intelligent graphics controller
board has its own 6809 CPU running at 1.5 MHz. Text and graphics
can be mixed with 43 lines of 83 characters in a 6 X 10 dot matrix
character cell as default but are capable of being set to 15 different
sizes in four orientations. Four 96 character sets are available. The
board also includes an eight-channel 8-bit A/D converter for
joystick, tracker ball or mouse control. The board has 6K of
firmware, expandable up to 20K and communicates with the host
board via only 4 bytes on the host memory map.

The GIMIX 6809+ CPU board includes jumper selectable clock
speeds of 1, 1.5 or 2 MHz for the 6809 and clock speeds of 2, 3 or 4
for the optional 9511A or 9512 Arithmetic processor. It also has a
6840 programmable timer and a battery backed 58167 real-time
clock.

Further details about these and many other boards and systems
from Windrush Micro Systems on 0692 405189.



Further Reading

Books

One book like this can only provide you with a glimpse of the
exciting and challenging field of machine code programming. The
key to success in developing your new knowledge lies in hard work
and receptiveness to ideas. The following list of books should
provide you with a lot of the information you need to extend your
programming abilities.

Sinclair, James and Barden are more or less introductory books
but they do contain information about the Dragon and Color
Computer (and about 6809 programming generally) that [ did not
have room for in this book. DeMarco and Leventhal are essential
reading if you want to progress further - both of them give many
useful references. Don't bother getting Knuth unless you are
contemplating doing a course in computer science or are
inordinately fond of mathematics. I have included the very
informative psychology book to remind you that computers are
built, programmed and used by people. Hofstadter and Spencer-
Brown will both concentrate and expand your thoughts - read them
together.

Motorola books
MC6809-MC6809E Microprocessor Programming Manual
Motorola Microprocessor Products Data Manual
Tandy (Radio Shack) books
Color Computer Graphics by William Barden Jr.
Cat. No. 62-2076
TRS-80 Color Computer Assembly Language Programming
by William Barden, Jr. Cat. 0. 62-2077
TRS-80 Color Computer Technical Reference Manual
Cat. No. 26-3193
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Brown, R. and R. J. Herrnstein. Psychology. London: Methuen,
1975.

DeMarco, Tom. Structured Analvsis and System Specification.
New York: Yourdon Inc., 1978.

Hofstadter, Douglas R. Gddel, Escher. Bach: an Eternal Golden
Braid. London: Penguin Books, 1980.

James, Mike. Anaromy of the Dragon. Sigma Technical Press,
1983.

Knuth, Donald E. The Art of Computer Programming. Volume I:
Fundamental Algorithms. Massachusetts: Addison-Wesley, 1973
(2nd edition).

Leventhal, Lance A. 6809 Assemblv Language Programming.
Berkeley: Osborne/ McGraw-Hill, 1981.

Sinclair, lan. [ntroducing Dragon Machine Code. London:
Granada, 1984.

Spencer-Brown, G. Laws of Form. New York: E. P. Dutton, 1979.

Magazines

Reading magazines will keep you up to date with hardware
developments. No magazine, as far as | know, is aimed solely at the
writer of assembly language programs, though some do publish
machine code listings and *hex dumps’ occasionally.

Personal Computer World has been running a series since 1980
called ‘PCW SUB SET". This publishes three or four machine code
routines submitted by readers in each issue. Give it a try.

ROM

Youcan get a lot of ideas from the professionally written programs
inside your computer system. Buy a disassembler (or write one) and
find out how your BASIC is written. Just remember, though, that
the software inside your machine is copyright so you can’t use it
commercially.



Index of Routines

BASADJ. Adjust number to base, 26

BRKCHK, Check for BREAK key
pressed. 41

BUTTON. Check for joystick fire-
button press, 56

CDPRNT. Two digit BCD to printed
ASCII decimal digits. 98

CHKEYZ, Check for Z key pressed. 25

CLOCK. On-screen digital clock.97

CRDRST. Reset co-ordinates to origin,
63

DIVAB. 8-bit unsigned binary integer
division, 30

DIVXY. 16-bit unsigned binary integer
division. 31

GDCLR. Clear graphics window. 63

GDRST. Reset co-ordinates and clear
graphics window, 63

GSTRNG. Process a program
embedded string of graphics
commands. 64

G XMPLP. Graphics suite
demonstration program for the
Dragon, 66

HICUE. Initialise Dragon interrupt
and 6-bit sound, 94

HICUT. Cut off Dragon interrupt and
6-bit sound. 95

HIDIVE, Dynamic sound interrupt
routine, 96

HIF 1. Dynamic sound main routine, 94

HI1JAN, Dynamic sound
demonstration program for the
Dragon. 94

HIMAP, Dynamic sound parameter
read routine, 95

JOYAD, Joystick analog to digital
read, 56

JOYCAB. Single joystick and fire-
button read. 55

KEYCHK, Check for defined keys
pressed, 42

LI E. Modal. vectored straight line
draw, 61

LINEDO. Draw line from stored
variables, 62

LINIT. Calculate line variables from
vector. 61

MBADD. Multi-byte binary addition.
28

MBYBY, 8-bit by 16-bit unsigned
binary integer multiplication, 23

MUL XY, 16-bit unsigned binary
integer multiplication, 32

PADDR, Co-ordinates to absolute
address conversion, 59

PLOT, Modal, vectored plot, 58

PLOTAP. Plot addressed point, 59

RANDOM. 16-bit pseudo-random
number generator, 34

SDSTR, Sound string processing
routine. 91

SGSTR, Index named sound string, 90

SNSTR. Play named sound string. 90

SOUND. Wave shape sound routine,
88

STCRDS. Set new co-ordinates, 63

STMODE. Set new PLOT mode, 62

SWITCH, Switch Dragon control lines
on or off, 53

SXMPL. Sound demonstration
program for the Dragon. 91

TCARET. High resolution text
carriage return, 78

TCHARY. Index user defined
character, 75

TCLEAR. High resolution text clear
screen, 78

TCNTRL. High resolution text control
operation select, 77
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TDISPX, High resolution text screen
character index, 75, 83

TDOWN, Cursor down, 79

THOME, Cursor home (top left), 78

TLEFT, Cursor left, 79

TNSTR, Index named character string,

82

TPRINT, Modal, high resolution
character print, 74

TRIGHT, Cursor right, 79

TSCROL, Scroll high resolution text
screen, 80

TSTRNG, Character and control code
string handling routine, 8

TUP, Cursor up, 79

TVALID, Validate cursor, 79

TWRITE, Transter character from user
definable characters to high
resolution text screen, 75

VECADD, Add vector to co-ordinates,
testing against limits, 60

VIDEOM, Video mode selection onthe
Dragon, 52

VIDEOP, Video page addressingonthe
Dragon. 50



index

accumulator offset addressing. 50 branch instructions. 123

accumulator only instructions, 117 bytes.4

accumulators, 102

acknowledge signal, 39 carry flag. 105

address bus, 46, 100 cassette motor control, 44,53

addressing, 2 clear screen, 63,78

addressing modes. 115 clock cycles, 34,92, 101, 116

address selection, 8 clock signals. 44

analog to digital, 54 coding, 22

AND (bit logic). 69, 116 colour selection. 52

arithmetic. 28 comments. 24. 109

arithmetic and logic instructions. 119 computer system components, 99

arithmetic. special purpose condition codes register. 104
instructions. 125 constants, 25

arrowheads. 15 constructs, 16

ASCIL 22,71 4 81,98, 128 control bits. 105

assembler directives, 110 control codes, 77

assembler fields. 109 control register, 36 40.45

assembler operand forms, 110 CPU (Central Processing Unit), 100

assemblers, 10,109 cursor movement, 77 &0

assembly language, 10

assumptions, 9 DAA (Decimal Adjust A). 98, 106

auto-inctement addressing. 53 DASM (assembler) labels, 100

data. 25. 111

bank account, 2 data bus. 100

bank switching, 47 data direction register. 37 8

BASIC entry of machine code, 10 debugging, 22

BASIC variables, 4 delay, 66, 88 9

BCD (Binary Coded Decimal). 97 8 delimiter, 109
BCD to ASCII decimal conversion.  digital clock, 97

9% digital to analog. 55. 85 6.93
binary chop. 7 direct addressing. 7
binary decision. 7. 16, 54 direct page. 8
binary digits, 4 direct page addressing, 104
binary tree. 10 direct (page) addressing mode, 115
bit inversion. 57. 60. 65, 74 direct page register. 104
bit merging, 52. 56 division, 29
bits. 4 documentation, 12, 24
bit testing. 60 dollar sign. 5, 11

bit uses. 8 dot matrix. 74
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DO WHILE construct, I¥
Dragon computer, 130
driver program, 47
dynamic RAM, 45
dynamic sound, 92

Eclocksignal. 44

END (assemblerdirective), 110

end-ol -table, 90, 92

entire state {lag, 106

EOR (bit logic). 69. 117

EQU (assembler directive). 26. 88, 110,
s

error conditions. 81

execution time, 24

extended addressing, 47

extended addressing mode. 1S

fallthrough. 18,25

FCB (assembler directive). 53. 110
FCC (assembler directive). 81, 110
FDB (assembler directive). 60, 1 10
lire-button, 42. 54

FIRQ (Fast Interrupt Request). 39. 107
FIRQ Interrupt mask. 106

flags, 22. 105

flowcharts, 15,19

flow chart standards, 15

flow chart symbols, 1S

flow chart symbols, 15

frame sync, 92

frequency, 84, 88,92.97

GIMIX, 47,132
graphics, 57, 70
graphics string, 64

half-carry tlag, 105
hand-assembly, 10
handshaking, 3%
hardware. 36, 49, 84,99
hardware stack pointer, 103
harmonics. 87

hash sign, 111

header information, 24
hexadecimal. §
hexdump, 71, 88.93
high resolution text, 69
high resolution video, 47
horizontal sync. 92

immediate addres
immediate add
indexed addressin

ing. 26
ing mode. 115
2. 25

indexed addressing mode. 116,126
index registers, 103

indirect addressing. 3

indirect addressing mode, 116, 126
inherent addressing mode, 115
input/output devices, 36,99, 108
instruction set. 113

instruction set dimensions, 113
instruction set redundancy, |13
interrupt, 27, 38, 92, 97. 106
interrupt instructions, 124
interrupt request, 106

interrupt vectors, 106

inverse characters. 74

IRQ interrupt mask. 105

IRQ (interrupt request). 39.92,.97. 107
iteration, 16

Jjoystick, 41.42,54

jump table. 77

keyboard. 40
keypress.40.42

linedraw, 61
lists, 10

machine code, 10, 12, 109
machine code monitor, 23, 74
Magical Number Seven, 1, 14
management, 22

mask, 52,96

memory. 99

memory-mapped devices, 37
memory-mapped video, 99
memory reference 1O, 101
mental tricks, |

Miller. G. A.. psychologist. 1
mnemonic, 10, 109, 167
modules.47

modulus arithmetic. 34
moving graphics, 65,74
MUL..29

multi-byte addition, 28
multiplication, 29
multiplication by shiftandadd. 34
MUX, analog multiplexer. 44

named strings., 81, 90
negative (lag, 105
AM | (Non-Maskable Interrupt). 106

object code, 10
object program. 109



octal. 5. 111

ON/OFF. 6. 40

opcode. 115

operand. 109, 115
optimisation, 19, 67, 83

OR (bitlogic). 74. 116

ORG (assembler directive). |10
overflow flag. 105

page numbers. 104
pages. 8

parallel 1/ O, 36
parameter. 25,93
patchingin. 97
PCWSUBSET. 34,134
per-cent sign, 111
peripheral register, 37
peripherals, 38.99
PIA.36.53.85

PIA Controllines, 38.53
PIA functions. 42 3

PIA initialisation, 37
place value, 4

PLAY (BASIC function). 97
plot point. 58

pointer manipulation instructions. 122

pointers, 103
ports.99. 101
Positron 900, 101, 131
post-bytes, 121,127
PRINT AT, 76

print high resolution character. 74

procedure, 22

processor.99. 113

program address. 103

program control instructions, 125
program counter, 104

program counter offset addressing.

104. 111
program [low, 13,15
programming, 2

Q clock signal. 44

RAM (Random Access Memory), 26,

99
random number generator. 34
random numbers, 33
read-instruction sequence. 104
ready signal. 39. 107
refresh, 45
register exchange and transfer
instructions, 121

Index 139

register-memory transler instructions. 120

registers, 100

register set, 102

relative addressing mode. 115

REPEATT IF construct, |7

REPEAT UNTIL construct, 17

reserved area, 26

RESET. 106

RMB (assembler directive), 27,60, 110

ROM (Read Only Memory). 26, 49.99.
134

RTT (Return from Interrupt), 96, 106

SAM registers. 46

SAM (Synchronous Address
Multiplexer). 44, 49

screen memory, 99

scrolling. 80

SEED System 19, 101, 131

selection. 16

separator. 98

sequence, 16

serial 110,36

signed offset, 28, 115

sign flag  see negative flag

sine wave, 86

sound enable. 44, 53.90

sound generation, 84

sound select, 44, 53, 84

sound sources, 84

sound strings. 89

source program, 10, 109

square wave, 87.93

stack.27.103

stack operation instructions, 121

stack space, 27. 108

string transfer. 29

structure, 13, 58

structurechart, 14

structured design. 12

structured information. 10

structure, pathological, 16, 18

structure tree, 13, 14

stubs, 23

subroutine callinstructions, 5§

successive approximation, 55. 56

SWI (Software Interrupt). 106

switch, 53

switch register, 48

synchronisation, 101

systemclock. 101

system control devices. 36, 101

system parameters, 26

system variables. 26
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telephone numbers, |

terminator byte. 77, 81, &8

terminator word. 81, 90,95

test and compare instructions. | 1§

test data, 22

testing, 22

textstrings. 81

“three §'s™ of structure. speed and size.
114

TIMER (BASIC function), 27. 92,
97. 108

timing signals. 44, 101

top-down process. 13,22

transparent action, 45

I'RS-80 Color Computer, 130

user-definable characters, 69,71
user stack pointer, 104

variable data, 26

variable storage, 60, 81

variable voltage. 55. 85

VDG (Video Display Generator), 45,
49.65.69

vector, 26. 5. 60

vector addition. 60

video mode. 51

video page. 50
video-RAM. 99

voltage, +5 volts. 6.40.85
volume, 6. KK, 92

wait. 95

waves. 86

wave-shape table, 88
weatherhouse effecr, 47
window. 26, 5%, 65

Wind rush Micro Systems, 131
workspace, 27

ZK0. 101,113
sero lag, 105

6502. 113

6809, 3.28.36.44.101. 113
6820 6821, 16

6883, 36



MACHINE CODE - POWERFUL . . . EFFECTIVE . . .
ATTAINABLE!

At the heart of the Dragon, TRS-80 Color Computer and
other computer systems, the 6809 microprocessor
performs up to a million operations every second. The
speed of interpreted BASIC, however, is measured in
mere hundreds of actions per second. Machine code is
the only way that you, the programmer, can harness the
full power of the machine- for really fast games, accurate
timing to thousandths of a second and total control of dll
functions.

This book introduces you to 6809 machine code, the
professional programming methods that will save you
time and frustration, and tells you how to take command
of the support chips dealing with sound, graphics,
keyboard and other input/output functions. Many
essential routines are given with explanatory
documentation to show the 6809 in action. Perhaps most
importantly for Dragon owners, the software is provided
to put text on a high resolution screen with a fully re-
definable character set.

The Author

David Barrow is well-known to machine code enthusiasts
as a prolific contributor to, and later presenter of, the
machine code series PCW SUB SET in Personal Computer
World. He is the co-author, with Alan Tootill, of Z80
Machine Code For Humans and 6502 Machine Code For
Humans
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